This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105728 #23 Sep 08 2022 08:45:17 %S A105728 1,1,2,1,5,3,1,11,11,4,1,23,33,19,5,1,47,89,71,29,6,1,95,225,231,129, %T A105728 41,7,1,191,545,687,489,211,55,8,1,383,1281,1919,1665,911,321,71,9,1, %U A105728 767,2945,5119,5249,3487,1553,463,89,10,1,1535,6657,13183,15617,12223,6593,2479,641,109,11 %N A105728 Triangle read by rows: T(n,1) = 1, T(n,n) = n and for 1 < k < n: T(n,k) = T(n-1,k-1) + 2*T(n-1,k). %C A105728 Sum of n-th row = 3^(n-1): Sum_{k=1..n} T(n,k) = A000244(n-1); %C A105728 for n>1: T(n,2) = A083329(n-1), T(n,n-1) = A028387(n-2). %H A105728 Reinhard Zumkeller, <a href="/A105728/b105728.txt">Rows n = 1..120 of triangle, flattened</a> %e A105728 Triangle begins as: %e A105728 1; %e A105728 1, 2; %e A105728 1, 5, 3; %e A105728 1, 11, 11, 4; %e A105728 1, 23, 33, 19, 5; %e A105728 1, 47, 89, 71, 29, 6; %e A105728 ... %p A105728 T:= proc(n, k) option remember; %p A105728 if k=1 then 1 %p A105728 elif k=n then n %p A105728 else T(n-1, k-1) + 2*T(n-1, k) %p A105728 fi %p A105728 end: %p A105728 seq(seq(T(n, k), k=1..n), n=1..12); # _G. C. Greubel_, Nov 13 2019 %t A105728 T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, n, T[n-1, k-1] + 2*T[n-1, k]]]; %t A105728 Table[T[n, k], {n, 12}, {k, n}]//Flatten (* _G. C. Greubel_, Nov 13 2019 *) %o A105728 (Haskell) %o A105728 a105728 n k = a105728_tabl !! (n-1) !! (k-1) %o A105728 a105728_row n = a105728_tabl !! (n-1) %o A105728 a105728_tabl = iterate (\row -> zipWith (+) ([0] ++ tail row ++ [1]) $ %o A105728 zipWith (+) ([0] ++ row) (row ++ [0])) [1] %o A105728 -- _Reinhard Zumkeller_, Jul 22 2013 %o A105728 (Magma) %o A105728 function T(n,k) %o A105728 if k eq 1 then return 1; %o A105728 elif k eq n then return n; %o A105728 else return T(n-1,k-1) + 2*T(n-1,k); %o A105728 end if; %o A105728 return T; %o A105728 end function; %o A105728 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 13 2019 %o A105728 (Sage) %o A105728 @CachedFunction %o A105728 def T(n, k): %o A105728 if (k==1): return 1 %o A105728 elif (k==n): return n %o A105728 else: return T(n-1,k-1) + 2*T(n-1, k) %o A105728 [[T(n, k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Nov 13 2019 %Y A105728 Cf. A013609, A115068. %K A105728 nonn,tabl %O A105728 1,3 %A A105728 _Reinhard Zumkeller_, Apr 18 2005