This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105758 #28 Feb 16 2025 08:32:57 %S A105758 3,36,37,92,660,6091,8415,11467,13686,38831,49828,97148 %N A105758 Indices of prime hexanacci (or Fibonacci 6-step) numbers A001592 (using offset -4). %C A105758 No other n < 30000. %C A105758 This sequence uses the convention of the Noe and Post reference. Their indexing scheme differs by 4 from the indices in A001592. Sequence A249635 lists the indices of the same primes (A105759) using the indexing scheme as defined in A001592. - _Robert Price_, Nov 02 2014 [Edited by _M. F. Hasler_, Apr 22 2018] %C A105758 a(13) > 3*10^5. - _Robert Price_, Nov 02 2014 %H A105758 Tony D. Noe and Jonathan Vos Post, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html">Primes in Fibonacci n-step and Lucas n-step Sequences,</a> J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4. %H A105758 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a> %F A105758 a(n) = A249635(n) - 4. A105759(n) = A001592(A249635(n)) = A001592(a(n) + 4). - _M. F. Hasler_, Apr 22 2018 %t A105758 a={1, 0, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, n]], {n, 30000}]; lst %Y A105758 Cf. A105759 (prime Fibonacci 6-step numbers), A249635 (= a(n) + 4), A001592. %Y A105758 Cf. A000045, A000073, A000078 (and A001631), A001591, A122189 (or A066178), A079262, A104144, A122265, A168082, A168083 (Fibonacci, tribonacci, tetranacci numbers and other generalizations). %Y A105758 Cf. A005478, A092836, A104535, A105757, A105761, ... (primes in these sequence). %Y A105758 Cf. A001605, A303263, A303264 (and A104534 and A247027), A248757 (and A105756), ... (indices of primes in A000045, A000073, A000078, ...). %K A105758 nonn,more %O A105758 1,1 %A A105758 _T. D. Noe_, Apr 22 2005 %E A105758 a(10)-a(12) from _Robert Price_, Nov 02 2014 %E A105758 Edited by _M. F. Hasler_, Apr 22 2018