cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105790 Number of bisections to an inscribed triangle to approximate Pi (A000796) to n decimal digits of accuracy.

Original entry on oeis.org

1, 4, 4, 6, 8, 9, 11, 13, 14, 16, 17, 19, 21, 23, 25, 26, 27, 30, 31, 33, 34, 36, 38, 40, 41, 43, 45, 46, 47, 49, 53, 53, 54, 56, 58, 60, 61, 62, 65, 66, 67, 70, 71, 72, 75, 76, 78, 80, 83, 83, 84, 87, 89, 89, 91, 93, 94, 96, 98, 99, 100, 103, 105, 107, 107, 109, 112, 112
Offset: 1

Views

Author

Robert G. Wilson v, Apr 20 2005

Keywords

References

  • Howard Anton, Irl C. Bivens and Stephen L. Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY, Section 6.1 An Overview of the Area Problem, page 372-377.
  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, page 56-57.

Crossrefs

Cf. A000796.

Programs

  • Mathematica
    $MaxExtraPrecision =128; p=RealDigits[ Pi, 10, 100][[1]]; f[n_] := 3*2^(n)*Sqrt[2 - Nest[ Sqrt[2 + # ] &, Sqrt[3], n - 1]]; g[n_] := Block[{k = 1, q = Take[p, n + 1]}, While[ Take[ RealDigits[ f[k], 10, 100][[1]], n + 1] != q, k++ ]; k]; Table[ g[n], {n, 69}]

Formula

a(n) = 3*2^n*sqrt(2- sqrt(2+ sqrt(2+ ... sqrt(2+ sqrt(3))...))).
A(n) in Table 6.1.1 = Sin( 2Pi/n )*n/2. - Anton.