A105790 Number of bisections to an inscribed triangle to approximate Pi (A000796) to n decimal digits of accuracy.
1, 4, 4, 6, 8, 9, 11, 13, 14, 16, 17, 19, 21, 23, 25, 26, 27, 30, 31, 33, 34, 36, 38, 40, 41, 43, 45, 46, 47, 49, 53, 53, 54, 56, 58, 60, 61, 62, 65, 66, 67, 70, 71, 72, 75, 76, 78, 80, 83, 83, 84, 87, 89, 89, 91, 93, 94, 96, 98, 99, 100, 103, 105, 107, 107, 109, 112, 112
Offset: 1
References
- Howard Anton, Irl C. Bivens and Stephen L. Davis, Calculus, Early Transcendentals, 7th Edition, John Wiley & Sons, Inc., NY, Section 6.1 An Overview of the Area Problem, page 372-377.
- William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton, NJ 2005, page 56-57.
Crossrefs
Cf. A000796.
Programs
-
Mathematica
$MaxExtraPrecision =128; p=RealDigits[ Pi, 10, 100][[1]]; f[n_] := 3*2^(n)*Sqrt[2 - Nest[ Sqrt[2 + # ] &, Sqrt[3], n - 1]]; g[n_] := Block[{k = 1, q = Take[p, n + 1]}, While[ Take[ RealDigits[ f[k], 10, 100][[1]], n + 1] != q, k++ ]; k]; Table[ g[n], {n, 69}]
Formula
a(n) = 3*2^n*sqrt(2- sqrt(2+ sqrt(2+ ... sqrt(2+ sqrt(3))...))).
A(n) in Table 6.1.1 = Sin( 2Pi/n )*n/2. - Anton.