This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105802 #10 Feb 16 2025 08:32:57 %S A105802 1,3,6,15,12,45,24,36,48,405,60,315,192,144,120,945,180,1575,240,576, %T A105802 3072,295245,360,1296,12288,900,960,25515,720,14175,840,9216,196608, %U A105802 5184,1260,17325,786432,36864,1680,31185,2880,127575,15360,3600,99225 %N A105802 Smallest m such that the m-th Fibonacci number has exactly n divisors that are also Fibonacci numbers. %C A105802 A076985(n) = A000045(a(n)); A076984(a(n)) = n. %H A105802 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %F A105802 Conjecture: a(2k+1) = 3*2^(Prime[k-1]-1) for k>3. It appears that a(2k+1) = 3*2^k for k = {1,2,3,4,6,10,12,16,18,...} = A068499[n] Numbers n such that n! reduced modulo (n+1) is not zero. - _Alexander Adamchuk_, Sep 15 2006 %e A105802 n=6: a(6) = 45, A076985(6) = A000045(45) = 1134903170, %e A105802 A076984(45) = #{1,2,5,34,109441,1134903170} = #{fib(1),fib(2),fib(5),fib(9),fib(21),fib(45)} = 6. %t A105802 t=Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 1000000}]; lst={}; n=1; While[pos=Flatten[Position[t, n, 1, 1]]; Length[pos]>0, AppendTo[lst, pos[[1]]]; n++ ]; lst (Noe) %Y A105802 Cf. A068499. %K A105802 nonn %O A105802 1,2 %A A105802 _Reinhard Zumkeller_, Apr 20 2005 %E A105802 More terms from _T. D. Noe_, Jan 18 2006