A105805 Irregular triangle read by rows: T(n,k) is the Dyson's rank of the k-th partition of n in Abramowitz-Stegun order.
0, 1, -1, 2, 0, -2, 3, 1, 0, -1, -3, 4, 2, 1, 0, -1, -2, -4, 5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5, 6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6, 7, 5, 4, 3, 2, 3, 2, 1, 1, 0, 1, 0, -1, -1, -2, -1, -2, -3, -3, -4, -5, -7, 8, 6, 5, 4, 3, 4, 3, 2, 1, 2, 1, 0, 2, 1, 0, 0, -1, -1, 0, -1, -2, -2, -3, -2, -3, -4, -4, -5, -6, -8, 9, 7, 6, 5, 4, 3, 5, 4, 3
Offset: 1
Examples
Triangle begins: [0]; [1, -1]; [2, 0, -2]; [3, 1, 0, -1, -3]; [4, 2, 1, 0, -1, -2, -4]; [5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5]; ... Row 3 for partitions of 3 in the mentioned order: 3,(1,2),1^3 with ranks 2,0,-2. From _Wolfdieter Lang_, Jul 18 2013: (Start) Row n = 7 is [6, 4, 3, 2, 2, 1, 0 , 0, 0, -1, -2, -2, -3, -4, -6]. This is also antisymmetric, but by accident, because a(7,7) = 0 for the partition (1,3^2), conjugate to (2^2,3) with a(7,8) = 0, and a(7,9) = 0 for (1^3,4) which is self-conjugate. Row n=8 (see the link) is no longer antisymmetric. See the _Franklin T. Adams-Watters_ correction above. (End)
Links
- A. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 831-2.
- Freeman J. Dyson, Problems for solution nr. 4261, Am. Math. Month. 54 (1947) 418.
- Wolfdieter Lang, First 16 rows.
Crossrefs
Programs
-
Maple
# ASPrts is implemented in A119441 A105805 := proc(n,k) local pi; pi := ASPrts(n)[k] ; max(op(pi))-nops(pi) ; end proc: for n from 1 do for k from 1 to A000041(n) do printf("%d,",A105805(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 17 2013
Formula
Extensions
Name clarified by Omar E. Pol, Dec 31 2019
Comments