cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105851 Binomial transform triangle, read by rows.

This page as a plain text file.
%I A105851 #21 Feb 13 2022 23:17:44
%S A105851 1,2,1,4,3,1,8,8,4,1,16,20,12,5,1,32,48,32,16,6,1,64,112,80,44,20,7,1,
%T A105851 128,256,192,112,56,24,8,1,256,576,448,272,144,68,28,9,1,512,1280,
%U A105851 1024,640,352,176,80,32,10,1,1024,2816,2304,1472,832,432,208,92,36,11,1
%N A105851 Binomial transform triangle, read by rows.
%C A105851 Let P = Pascal's triangle as an infinite lower triangular matrix and A is the infinite array of arithmetic sequences as shown in A077028:
%C A105851   1, 1, 1,  1,  1, ...
%C A105851   1, 2, 3,  4,  5, ...
%C A105851   1, 3, 5,  7,  9, ...
%C A105851   1, 4, 7, 10, 13, ...
%C A105851   1, 5, 9, 13, 17, ...
%C A105851 Perform the operation P * A, getting a new array with each column being the binomial transform of an arithmetic sequence. Take antidiagonals of the new array, then by rows = the triangle of A105851.
%F A105851 n-th column of the triangle is the binomial transform of the arithmetic sequence (n*k + 1), (k = 0, 1, 2, ...).
%F A105851 From _Peter Bala_, Jul 26 2015: (Start)
%F A105851 T(n,k) = (2 + k*(n - k))*2^(n-k-1) for 0 <= k <= n.
%F A105851 O.g.f.: (1 - x*(2 + t) + 3*t*x^2)/((1 - 2*x)^2*(1 - t*x)^2) = 1 + (2 + t)*x + (4 + 3*t + t^2)*x^2 + ....
%F A105851 k-th column g.f.: (1 + (k - 2)*x)/(1 - 2*x)^2. Cf. A077028. (End)
%e A105851 Column 3: 1, 5, 16, 44, 112, ... (A053220) is the binomial transform of 3k+1 (A016777: 1, 4, 7, ...).
%e A105851 Triangle begins:
%e A105851      1;
%e A105851      2,    1;
%e A105851      4,    3,    1;
%e A105851      8,    8,    4,    1;
%e A105851     16,   20,   12,    5,   1;
%e A105851     32,   48,   32,   16,   6,   1;
%e A105851     64,  112,   80,   44,  20,   7,   1;
%e A105851    128,  256,  192,  112,  56,  24,   8,  1;
%e A105851    256,  576,  448,  272, 144,  68,  28,  9,  1;
%e A105851    512, 1280, 1024,  640, 352, 176,  80, 32, 10,  1;
%e A105851   1024, 2816, 2304, 1472, 832, 432, 208, 92, 36, 11, 1;
%e A105851   ...
%p A105851 seq(seq((2 + k*(n - k))*2^(n-k-1),k=0..n),n=0..10); # _Peter Bala_, Jul 26 2015
%t A105851 t[n_, k_]:=(2 + k (n - k)) 2^(n - k - 1); Table[t[n - 1, k - 1], {n, 10}, {k, n}]//Flatten (* _Vincenzo Librandi_, Jul 26 2015 *)
%o A105851 (Magma) /* As triangle */ [[(2+k*(n-k))*2^(n-k-1): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Jul 26 2015
%Y A105851 Cf. A077028, A001792, A001787, A053220, A016777, A014480.
%K A105851 nonn,tabl
%O A105851 0,2
%A A105851 _Gary W. Adamson_, Apr 23 2005
%E A105851 More terms from _Philippe Deléham_, Mar 31 2007