cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105874 Primes for which -2 is a primitive root.

Original entry on oeis.org

5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, 311, 317, 349, 359, 367, 373, 383, 389, 421, 461, 463, 479, 487, 503, 509, 541, 557, 599, 607, 613, 647, 653, 661, 677, 701, 709, 719, 743, 751, 757, 773, 797
Offset: 1

Views

Author

N. J. A. Sloane, Apr 24 2005

Keywords

Comments

Also primes for which (p-1)/2 (==-1/2 mod p) is a primitive root. [Joerg Arndt, Jun 27 2011]

Crossrefs

Programs

  • Maple
    with(numtheory); f:=proc(n) local t1,i,p; t1:=[]; for i from 1 to 500 do p:=ithprime(i); if order(n,p) = p-1 then t1:=[op(t1),p]; fi; od; t1; end; f(-2);
  • Mathematica
    pr=-2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)
    a[p_,q_]:=Sum[2 Cos[2^n Pi/((2 q+1) (2 p+1))], {n,1,2 q p}];
    Select[Range[400], Reduce[a[#, 1] == 1, Integers] &];
    2 % + 1 (* Gerry Martens, Apr 28 2015 *)
  • PARI
    forprime(p=3,10^4,if(p-1==znorder(Mod(-2,p)),print1(p", "))); /* Joerg Arndt, Jun 27 2011 */
    
  • Python
    from sympy import n_order, nextprime
    from itertools import islice
    def A105874_gen(startvalue=3): # generator of terms >= startvalue
        p = max(startvalue-1,2)
        while (p:=nextprime(p)):
            if n_order(-2,p) == p-1:
                yield p
    A105874_list = list(islice(A105874_gen(),20)) # Chai Wah Wu, Aug 11 2023

Formula

Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime belonging to this sequence when a(p,1)==1. - Gerry Martens, May 21 2015