This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105875 #16 Mar 31 2024 15:01:23 %S A105875 2,5,11,17,23,29,47,53,59,71,83,89,101,107,113,131,137,149,167,173, %T A105875 179,191,197,227,233,239,251,257,263,269,281,293,311,317,347,353,359, %U A105875 383,389,401,419,443,449,461,467,479,503,509,521,557,563,569,587,593,599,617,641 %N A105875 Primes for which -3 is a primitive root. %C A105875 Also, primes for which -27 is a primitive root. Proof: -27 = (-3)^3, so -27 is a primitive root just when -3 is a primitive root and the prime is not 3k+1. Now if -3 is a primitive root, then -3 is not a quadratic residue and so the prime is not 3k+1. - _Don Reble_, Sep 15 2007 %H A105875 Vincenzo Librandi, <a href="/A105875/b105875.txt">Table of n, a(n) for n = 1..1000</a> %H A105875 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a> %t A105875 pr=-3; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] %o A105875 (Python) %o A105875 from sympy import n_order, nextprime %o A105875 from itertools import islice %o A105875 def A105875_gen(startvalue=2): # generator of terms >= startvalue %o A105875 p = max(startvalue-1,1) %o A105875 while (p:=nextprime(p)): %o A105875 if p!=3 and n_order(-3,p) == p-1: %o A105875 yield p %o A105875 A105875_list = list(islice(A105875_gen(),20)) # _Chai Wah Wu_, Aug 11 2023 %Y A105875 Cf. A105874. %K A105875 nonn %O A105875 1,1 %A A105875 _N. J. A. Sloane_, Apr 24 2005