A105880 Primes for which -8 is a primitive root.
5, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 461, 479, 503, 509, 557, 599, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 863, 887, 941, 983, 1031, 1061, 1109, 1151, 1223, 1229, 1277, 1301, 1319, 1367, 1373, 1439
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Wikipedia, Artin's conjecture on primitive roots
- Index entries for primes by primitive root
Programs
-
Mathematica
pr=-8; Select[Prime[Range[400]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *) a[p_, q_]:= Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))],{n,1,2 q p}] 2 Select[Range[800], Rationalize[N[a[#, 9], 20]] == 1 &] + 1 (* Gerry Martens, Apr 28 2015 *)
-
PARI
is(n)=isprime(n) && n>3 && znorder(Mod(-8,n))==n-1 \\ Charles R Greathouse IV, May 21 2015
Formula
Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime of this sequence when a(p,9)==1. - Gerry Martens , May 21 2015
Comments