This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105887 #40 Feb 16 2025 08:32:57 %S A105887 2,11,13,29,37,41,43,59,71,73,89,97,101,103,127,131,149,157,163,179, %T A105887 191,193,239,251,269,281,307,313,337,359,373,389,401,419,431,433,449, %U A105887 457,461,479,487,491,509,521,523,547,569,577,599,607,613,641,701,719,727,733,757 %N A105887 Primes for which -15 is a primitive root. %C A105887 From _Jianing Song_, Jan 27 2019: (Start) %C A105887 All terms except the first are congruent to 7, 11, 13 or 14 modulo 15. If we define %C A105887 Pi(N,b) = # {p prime, p <= N, p == b (mod 15)}; %C A105887 Q(N) = # {p prime, 2 < p <= N, p in this sequence}, %C A105887 then by Artin's conjecture, Q(N) ~ (94/95)*C*N/log(N) ~ (188/95)*C*(Pi(N,7) + Pi(N,11) + Pi(N,13) + Pi(N,14)), where C = A005596 is Artin's constant. %C A105887 Conjecture: if we further define %C A105887 Q(N,b) = # {p prime, p <= N, p == b (mod 15), p in this sequence}, %C A105887 then we have: %C A105887 Q(N,7) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,7); %C A105887 Q(N,11) ~ (12/47)*Q(N) ~ ( 96/95)*C*Pi(N,11); %C A105887 Q(N,13) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,13); %C A105887 Q(N,14) ~ (15/47)*Q(N) ~ (120/95)*C*Pi(N,14). %C A105887 Numeric verification up tp N = 10^8: %C A105887 | Q(N,7) | Q(N,11) | Q(N,13) | Q(N,14) | Q(N) %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^3 | 14 | 18 | 13 | 19 | 64 %C A105887 Q(N,*)/Q(N) | 0.21875 | 0.28125 | 0.20313 | 0.29688 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^4 | 97 | 115 | 90 | 138 | 440 %C A105887 Q(N,*)/Q(N) | 0.22045 | 0.26136 | 0.20455 | 0.31364 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^5 | 753 | 891 | 750 | 1129 | 3523 %C A105887 Q(N,*)/Q(N) | 0.21374 | 0.25291 | 0.21289 | 0.32047 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^6 | 6153 | 7395 | 6176 | 9247 | 28971 %C A105887 Q(N,*)/Q(N) | 0.21238 | 0.25526 | 0.21318 | 0.31918 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^7 | 52427 | 62973 | 52368 | 78398 | 246166 %C A105887 Q(N,*)/Q(N) | 0.21297 | 0.25582 | 0.21273 | 0.31848 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 N = 10^8 | 453936 | 544551 | 453699 | 680226 | 2132412 %C A105887 Q(N,*)/Q(N) | 0.21287 | 0.25537 | 0.21276 | 0.31899 | 1.00000 %C A105887 -------------+---------+---------+---------+---------+--------- %C A105887 Conjectured | 0.21277 | 0.25532 | 0.21277 | 0.31915 | 1.00000 %C A105887 (End) %H A105887 Vincenzo Librandi, <a href="/A105887/b105887.txt">Table of n, a(n) for n = 1..1000</a> %H A105887 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArtinsConstant.html">Artin's constant</a> %H A105887 Wikipedia, <a href="https://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots">Artin's conjecture on primitive roots</a> %H A105887 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a> %t A105887 pr=-15; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] %Y A105887 Cf. A005596 (Artin's constant). %K A105887 nonn %O A105887 1,1 %A A105887 _N. J. A. Sloane_, Apr 24 2005