This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105937 #10 Sep 08 2022 08:45:17 %S A105937 1,1,0,1,1,-2,1,2,-2,0,1,3,0,-12,36,1,4,4,-24,24,0,1,5,10,-30,-60,420, %T A105937 -1800,1,6,18,-24,-216,720,-720,0,1,7,28,0,-420,420,5040,-30240, %U A105937 176400,1,8,40,48,-624,-960,14400,-40320,40320,0,1,9,54,126,-756,-3780,22680,22680,-589680,3764880,-28576800 %N A105937 Infinite square array read by antidiagonals: T(m, 0) = 1, T(m, 1) = m; T(m, k) = (m - k + 1) T(m+1, k-1) - (k-1) (m+1) T(m+2, k-2). %D A105937 V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007. %H A105937 G. C. Greubel, <a href="/A105937/b105937.txt">Antidiagonals n = 0..100, flattened</a> %F A105937 See A127080 for e.g.f. %e A105937 Array begins %e A105937 1 1 1 1 1 1 1 1 1 1 ... (A000012) %e A105937 0 1 2 3 4 5 6 7 8 9 ... (A001477) %e A105937 -2 -2 0 4 10 18 28 40 54 70 ... (A028552) %e A105937 0 12 24 30 24 0 48 126 240 396 ... (A126935) %e A105937 36 24 60 216 420 624 756 720 396 360 ... (A126958) %e A105937 ... %p A105937 T:= proc(n, k) option remember; %p A105937 if k=0 then 1 %p A105937 elif k=1 then n %p A105937 else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %p A105937 fi; end: %p A105937 seq(seq(T(n-k, k), k=0..n), n=0..12); # _G. C. Greubel_, Jan 28 2020 %t A105937 T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[n-k,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 28 2020 *) %o A105937 (PARI) T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) )); \\ _G. C. Greubel_, Jan 28 2020 %o A105937 (Magma) %o A105937 function T(n,k) %o A105937 if k eq 0 then return 1; %o A105937 elif k eq 1 then return n; %o A105937 else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2); %o A105937 end if; return T; end function; %o A105937 [T(n-k,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 28 2020 %o A105937 (Sage) %o A105937 @CachedFunction %o A105937 def T(n, k): %o A105937 if (k==0): return 1 %o A105937 elif (k==1): return n %o A105937 else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) %o A105937 [[T(n-k, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jan 28 2020 %Y A105937 Rows give A000027, A028552, A126935, A126958. %Y A105937 Columns give A126934, A126962, A127067, A127068, A127070. %Y A105937 A127080 gives another version of the array. %K A105937 sign,tabl %O A105937 0,6 %A A105937 Vincent v.d. Noort, Mar 24 2007 %E A105937 More terms added by _G. C. Greubel_, Jan 28 2020