This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A105943 #26 Mar 11 2025 04:37:59 %S A105943 120,2640,28512,205920,1132560,5096520,19631040,66745536,204787440, %T A105943 576438720,1507608960,3700494720,8593371072,19004570640,40244973120, %U A105943 81980500800,161264274600,307350735120,569168028000,1026681084000,1807851474000,3113521983000 %N A105943 a(n) = binomial(n+7,7) * binomial(n+10,7). %H A105943 T. D. Noe, <a href="/A105943/b105943.txt">Table of n, a(n) for n = 0..1000</a> %H A105943 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1). %F A105943 G.f.: 24*(5 + 35*x + 63*x^2 +35*x^3 + 5*x^4)/(1-x)^15. - _Harvey P. Dale_, Nov 14 2011 %F A105943 From _Amiram Eldar_, Sep 06 2022: (Start) %F A105943 Sum_{n>=0} 1/a(n) = 114905939/6480 - 5390*Pi^2/3. %F A105943 Sum_{n>=0} (-1)^n/a(n) = 14336*log(2)/9 - 3577279/3240. (End) %e A105943 If n=0 then C(0+7,0)*C(0+10,7) = C(7,0)*C(10,7) = 1*120 = 120. %e A105943 If n=6 then C(6+7,6)*C(6+10,7) = C(13,6)*C(16,7) = 1716*11440 = 19631040. %p A105943 A105943:=n->binomial(n+7,n)*binomial(n+10,7): seq(A105943(n), n=0..40); # _Wesley Ivan Hurt_, Apr 18 2017 %t A105943 Table[Binomial[n+7,n]Binomial[n+10,7],{n,0,30}] (* _Harvey P. Dale_, Nov 14 2011 *) %o A105943 (Python) %o A105943 A105943_list, m = [], [3432, -3432, 1320, 0]+[120]*11 %o A105943 for _ in range(10**2): %o A105943 A105943_list.append(m[-1]) %o A105943 for i in range(14): %o A105943 m[i+1] += m[i] # _Chai Wah Wu_, Jan 24 2016 %o A105943 (Magma) %o A105943 A105943:= func< n | Binomial(n+7,7)*Binomial(n+10,7) >; %o A105943 [A105943(n): n in [0..40]]; // _G. C. Greubel_, Mar 10 2025 %o A105943 (SageMath) %o A105943 def A105943(n): return binomial(n+7,7)*binomial(n+10,7) %o A105943 print([A105943(n) for n in range(41)]) # _G. C. Greubel_, Mar 10 2025 %Y A105943 Cf. A062145. %K A105943 easy,nonn %O A105943 0,1 %A A105943 _Zerinvary Lajos_, Apr 27 2005 %E A105943 More terms from _Harvey P. Dale_, Nov 14 2011