This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106028 #10 Feb 16 2025 08:32:57 %S A106028 0,0,2,1,2,2,2,1,1,1,2,2,4,4,4,1,1,2,2,1,4,4,4,3,3,3,3,3,4,4,4,2,2,3, %T A106028 3,3,3,3,4,3,3,3,3,3,3,3,5,2,2,2,2,2,2,2,7,5,5,5,5,5,5,5,7,2,2,2,2,3, %U A106028 3,3,4,2,3,2,2,4,4,4,5,2,3,2,2,2,2,2,3,3,6,6,6,5,5,6,6,4,5,4,4,4,4,5,5,4,4 %N A106028 Minimal number of editing steps (delete, insert or substitute) to transform the binary representation of n into that of A003714(n), the n-th fibbinary number. %C A106028 A014417(n) = A007088(A003714(n)). %H A106028 Michael Gilleland, <a href="http://www.merriampark.com/ld.htm">Levenshtein Distance</a> [It has been suggested that this algorithm gives incorrect results sometimes. - _N. J. A. Sloane_] %H A106028 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a> %H A106028 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A106028 a(n) = LevenshteinDistance(A014417(n), A007088(n)). %Y A106028 Cf. A035517, A000045, A072649, A070939. %K A106028 nonn %O A106028 1,3 %A A106028 _Reinhard Zumkeller_, May 05 2005