A106050 Column two-from-center of triangle A059317.
0, 0, 0, 1, 3, 13, 42, 146, 476, 1574, 5122, 16706, 54256, 176254, 571954, 1856245, 6023681, 19551939, 63476314, 206145075, 669695819, 2176401235, 7075521724, 23011145314, 74864599954, 243652588070, 793264765396, 2583532274289, 8416929889967, 27430452311513
Offset: 0
Keywords
Links
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
- José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
Programs
-
Maple
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: gser:=series(z^3*g^2/sqrt((1+z-z^2)*(1-3*z-z^2)),z=0,32): seq(coeff(gser,z,n),n=0..30); # Emeric Deutsch, Sep 03 2007
-
Mathematica
t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2 n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2]; t[n_, k_] /; n<0 || k<0 || k>2n = 0; a[n_] := t[n-1, n-3]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)
Formula
G.f.: z^3*g^2/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007
Comments