This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106150 #15 Jan 05 2025 19:51:38 %S A106150 0,0,0,0,3,22,82,218,476,914,1603,2628,4089,6102,8800,12334,16874, %T A106150 22610,29753,38536,49215,62070,77406,95554,116872,141746,170591, %U A106150 203852,242005,285558,335052,391062,454198,525106,604469,693008,791483,900694,1021482 %N A106150 6th diagonal of triangle in A059317. %H A106150 W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/35-4/klostermeyer.pdf">A Pascal rhombus</a>, Fibonacci Quarterly, 35 (1997), 318-328. %H A106150 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A106150 For n>2, a(n) = (1/120) (n-3)(n^4+28n^3-71n^2-478n+1360). %F A106150 From _Chai Wah Wu_, Mar 11 2021: (Start) %F A106150 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 8. %F A106150 G.f.: x^4*(-3*x^2 + x + 3)*(-x^2 + x + 1)/(x - 1)^6. (End) %o A106150 (PARI) a(n)=if(n>3,(n-3)*(n^4+28*n^3-71*n^2-478*n+1360)/120,0) \\ _Charles R Greathouse IV_, Oct 21 2022 %K A106150 nonn,easy %O A106150 0,5 %A A106150 _N. J. A. Sloane_, May 28 2005