cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106153 Decimal expansion of arcsin(sqrt(1 - (e/Pi)^2)) (in degrees), lesser angle in right triangle with hypotenuse Pi and longer leg e.

This page as a plain text file.
%I A106153 #23 Sep 02 2024 02:36:47
%S A106153 3,0,0,8,8,0,5,2,3,8,0,8,4,5,1,7,0,2,5,8,1,0,3,4,8,0,6,5,2,6,8,3,2,9,
%T A106153 9,6,4,8,1,3,2,0,7,7,3,0,2,0,7,5,0,6,7,7,6,1,6,2,4,0,9,1,1,3,2,4,9,2,
%U A106153 0,5,9,7,9,4,4,0,1,6,6,5,7,2,8,2,0,0,2,9,7,6,9,2,9,3,7,1,8,1,8,9
%N A106153 Decimal expansion of arcsin(sqrt(1 - (e/Pi)^2)) (in degrees), lesser angle in right triangle with hypotenuse Pi and longer leg e.
%C A106153 Triangle with hypotenuse Pi, longer leg e and shorter leg close to Pi/2 (and angle close to 30 degrees). Cf. A096437: Decimal expansion of sqrt(Pi^2 - e^2).
%H A106153 G. C. Greubel, <a href="/A106153/b106153.txt">Table of n, a(n) for n = 2..10000</a>
%e A106153 arcsin(sqrt(1 - (e/Pi)^2))/Pi*180 = 30.08805238... degrees.
%t A106153 RealDigits[N[ArcSin[Sqrt[Pi^2-E^2]/Pi]/Degree, 100]][[1]]
%o A106153 (PARI) asin(sqrt(Pi^2 - exp(2))/Pi)*(180/Pi) \\ _G. C. Greubel_, May 24 2017
%Y A106153 Cf. A096437.
%K A106153 cons,nonn
%O A106153 2,1
%A A106153 _Zak Seidov_, May 07 2005
%E A106153 Offset corrected by _Andrew Howroyd_, Sep 01 2024