cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106169 Number of inequivalent codes attaining highest minimal Hamming distance of any Type (4_II)^H+ even Hermitian additive self-dual code over GF(4) of length 2n.

This page as a plain text file.
%I A106169 #16 Aug 06 2024 09:41:20
%S A106169 1,2,1,3,19,1,1020
%N A106169 Number of inequivalent codes attaining highest minimal Hamming distance of any Type (4_II)^H+ even Hermitian additive self-dual code over GF(4) of length 2n.
%C A106169 The minimal distance of these codes is (so far) 2,2,4,4,4,6.
%H A106169 C. Bachoc and P. Gaborit, <a href="https://doi.org/10.1016/S1571-0653(04)00157-X">On extremal additive F_4 codes of length 10 to 18</a>, in International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math. 6 (2001), 10 pp.
%H A106169 A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, <a href="https://arxiv.org/abs/quant-ph/9608006">Quantum error correction via codes over GF(4)</a>, arXiv:quant-ph/9608006, 1996-1997; IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
%H A106169 P. Gaborit, W. C. Huffman, J.-L. Kim and V. S. Pless, <a href="https://citeseerx.ist.psu.edu/pdf/750e493600ee8c84682f85998f32e2b1304cfdd9">On additive GF(4) codes</a>, in Codes and Association Schemes (Piscataway, NJ, 1999), A. Barg and S. Litsyn, eds., Amer. Math. Soc., Providence, RI, 2001, pp. 135-149.
%H A106169 G. Hoehn, <a href="https://doi.org/10.1007/s00208-003-0440-y">Self-dual codes over the Kleinian four-group</a>, Math. Ann. 327 (2003), 227-255.
%H A106169 W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490.
%H A106169 W. C. Huffman, <a href="http://dx.doi.org/10.3934/amc.2007.1.357">Additive self-dual codes over F_4 with an automorphism of odd prime order</a>, Adv. Math. Commun., 1 (2007), 357-398.
%H A106169 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A106169 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y A106169 Cf. A105687.
%Y A106169 Cf. also A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
%K A106169 nonn,hard,more
%O A106169 1,2
%A A106169 _N. J. A. Sloane_, May 09 2005