This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106184 #33 Jan 30 2020 21:29:15 %S A106184 1,2,10,28,118,380,1508,5240,20326,73836,284396,1061128,4085820, %T A106184 15500120,59820040,229366768,887943046,3428967500,13315684764, %U A106184 51678099304,201246353492,783890932488,3060144292600,11953056489104 %N A106184 Expansion of 1/sqrt(1-4*x-8*x^2+32*x^3). %C A106184 In general, a(n)=sum{k=0..floor(n/2), C(2k,k)C(2(n-2k),n-2k)*r^k} has g.f. 1/sqrt(1-4x-4r*x^2+16r*x^3). %C A106184 Gould's sequence (A001316) divides a. [g|a <=> g(n)|a(n) for all n]. A268433 is the termwise quotient. - _Peter Luschny_, Feb 24 2016 %H A106184 Vincenzo Librandi, <a href="/A106184/b106184.txt">Table of n, a(n) for n = 0..300</a> %F A106184 a(n) = Sum_{k=0..floor(n/2)} C(2*k, k)*C(2(n-2*k), n-2*k)*2^k. %F A106184 D-finite with recurrence: n*a(n)+2*(1-2*n)*a(n-1)+8*(1-n)*a(n-2)+16*(2*n-3)*a(n-3) = 0. - _R. J. Mathar_, Dec 08 2011 %F A106184 a(n) ~ 2^(2*n+1/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 17 2012 %F A106184 G.f. g(x) satisfies (4*x-1)*(8*x^2-1)*g'(x) + (48*x^2-8*x-2)*g(x) = 0, from which Mathar's recurrence can be derived. - _Robert Israel_, Feb 23 2016 %F A106184 a(n) = C(2*n,n)*hypergeom([1/2,-n/2,-n/2+1/2],[-n/2+3/4,-n/2+1/4],1/2). - _Peter Luschny_, Feb 23 2016 %p A106184 S:= series(1/sqrt(1-4*x-8*x^2+32*x^3),x,101): %p A106184 seq(coeff(S,x,j),j=0..100); # _Robert Israel_, Feb 23 2016 %t A106184 CoefficientList[Series[1/Sqrt[1-4x-8x^2+32x^3],{x,0,30}],x] (* _Harvey P. Dale_, Sep 15 2011 *) %Y A106184 Cf. A000984, A001316, A268433. %K A106184 nonn,easy %O A106184 0,2 %A A106184 _Paul Barry_, Apr 24 2005