This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106198 #13 May 04 2024 09:23:56 %S A106198 1,1,1,2,2,1,3,5,3,1,5,13,10,4,1,8,34,35,17,5,1,13,89,125,75,26,6,1, %T A106198 21,233,450,338,139,37,7,1,34,610,1625,1541,757,233,50,8,1 %N A106198 Triangle, columns = successive binomial transforms of Fibonacci numbers. %C A106198 Column 0 = Fibonacci numbers, column 1 = odd-indexed Fibonacci numbers (first binomial transform of 1, 1, 2, 3, 5, ...); column 2 = second binomial transform of Fibonacci numbers, etc. %H A106198 G. C. Greubel, <a href="/A106198/b106198.txt">Rows n = 0..100 of triangle, flattened</a> %F A106198 Offset column k = k-th binomial transform of the Fibonacci numbers, given leftmost column = Fibonacci numbers. %e A106198 First few rows of the triangle are: %e A106198 1; %e A106198 1, 1; %e A106198 2, 2, 1; %e A106198 3, 5, 3, 1; %e A106198 5, 13, 10, 4, 1; %e A106198 8, 34, 35, 17, 5, 1; %e A106198 13, 89, 125, 75, 26, 6, 1; %e A106198 21, 233, 450, 338, 139, 37, 7, 1; %e A106198 ... %e A106198 Column 2 = A081567, second binomial transform of Fibonacci numbers: 1, 3, 10, 35, 125, ... %p A106198 with(combinat); %p A106198 T:= proc(n, k) option remember; %p A106198 if k=0 then fibonacci(n+1) %p A106198 else add( binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j), j=0..n-k) %p A106198 fi; end: %p A106198 seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Dec 11 2019 %t A106198 Table[If[k==0, Fibonacci[n+1], Sum[Binomial[n-k, j]*Fibonacci[j+1]*k^(n-k-j), {j,0,n-k}]], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 11 2019 *) %o A106198 (PARI) T(n,k) = if(k==0, fibonacci(n+1), sum(j=0,n-k, binomial(n-k,j)*fibonacci( j+1)*k^(n-k-j)) ); \\ _G. C. Greubel_, Dec 11 2019 %o A106198 (Magma) %o A106198 function T(n,k) %o A106198 if k eq 0 then return Fibonacci(n+1); %o A106198 else return (&+[Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j): j in [0..n-k]]); %o A106198 end if; return T; end function; %o A106198 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 11 2019 %o A106198 (Sage) %o A106198 @CachedFunction %o A106198 def T(n, k): %o A106198 if (k==0): return fibonacci(n+1) %o A106198 else: return sum(binomial(n-k,j)*fibonacci(j+1)*k^(n-k-j) for j in (0..n-k)) %o A106198 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 11 2019 %o A106198 (GAP) %o A106198 T:= function(n,k) %o A106198 if k=0 then return Fibonacci(n+1); %o A106198 else return Sum([0..n-k], j-> Binomial(n-k,j)*Fibonacci(j+1)*k^(n-k-j)); %o A106198 fi; end; %o A106198 Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Dec 11 2019 %Y A106198 Cf. A000045, A081567, A081568, A081569, A081570. %K A106198 nonn,tabl %O A106198 0,4 %A A106198 _Gary W. Adamson_, Apr 24 2005