This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106234 #16 Jan 14 2024 16:09:17 %S A106234 1,0,1,0,1,1,0,2,1,1,0,4,3,1,1,0,9,6,3,1,1,0,20,16,7,3,1,1,0,48,37,18, %T A106234 7,3,1,1,0,115,96,44,19,7,3,1,1,0,286,239,117,46,19,7,3,1,1,0,719,622, %U A106234 299,124,47,19,7,3,1,1,0,1842,1607,793,320,126,47,19,7,3,1,1 %N A106234 Triangle of the numbers of different forests with one or more isolated vertices. Those forests of rooted trees, have order N and m trees. %C A106234 The unique tree with an isolated node has order one. For N > 1 and m > 1 there is at least one partition of N in m parts, with a part equal to 1, so a(n) > 0 when m > 1 and a(n) = 0 when m = 1 and N > 1. %H A106234 Alois P. Heinz, <a href="/A106234/b106234.txt">Rows n = 1..141, flattened</a> %F A106234 a(n) = sum over the partitions of N: 1K1 + 2K2 + ... + NKN, with exactly m parts and one or more parts equal to 1, of Product_{i=1..N} binomial(A000081(i)+Ki-1,Ki). %e A106234 a(13) = 3 because 5 vertices can be partitioned in 3 trees in two ways: (1) one tree gets 3 nodes and the others get 1 each. (2) two trees get 2 nodes each and the other gets 1. Case (1) corresponds to 2 forests since A000081(3) = 2. Case (2) corresponds to one forest since A000081(2) = 1. %e A106234 Triangle T(n,k) begins: %e A106234 1; %e A106234 0, 1; %e A106234 0, 1, 1; %e A106234 0, 2, 1, 1; %e A106234 0, 4, 3, 1, 1; %e A106234 0, 9, 6, 3, 1, 1; %e A106234 0, 20, 16, 7, 3, 1, 1; %e A106234 0, 48, 37, 18, 7, 3, 1, 1; %e A106234 0, 115, 96, 44, 19, 7, 3, 1, 1; %e A106234 0, 286, 239, 117, 46, 19, 7, 3, 1, 1; %p A106234 with(numtheory): %p A106234 g:= proc(n) option remember; `if`(n<=1, n, (add(add( %p A106234 d*g(d), d=divisors(j))*g(n-j), j=1..n-1))/(n-1)) %p A106234 end: %p A106234 b:= proc(n, i) option remember; `if`(n=0, 0, `if`(i=1, %p A106234 x^n, expand(add(x^j*b(n-i*j, i-1)* %p A106234 binomial(g(i)+j-1,j), j=0..n/i)))) %p A106234 end: %p A106234 T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)): %p A106234 seq(T(n), n=1..14); # _Alois P. Heinz_, Jun 25 2014 %t A106234 g[n_] := g[n] = If[n <= 1, n, (Sum[Sum[d*g[d], {d, Divisors[j]}]*g[n-j], {j, 1, n-1}])/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 0, If[i == 1, x^n, Expand[ Sum[ x^j*b[n-i*j, i-1]*Binomial[g[i]+j-1, j], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 09 2015, after _Alois P. Heinz_ *) %Y A106234 Cf. A033185, A105820. %Y A106234 Row sums give A000081. %K A106234 nonn,tabl %O A106234 1,8 %A A106234 _Washington Bomfim_, Apr 26 2005