This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106242 #21 Jul 26 2017 03:15:29 %S A106242 1,0,1,0,1,1,0,2,3,3,0,6,11,13,13,0,26,50,67,73,73,0,146,286,403,479, %T A106242 505,505,0,1010,1994,2876,3565,3997,4143,4143,0,8286,16426,23988, %U A106242 30429,35299,38303,39313,39313,0,78626,156242,229844,295572,349989,390403,415115,423401,423401 %N A106242 Same triangle as A106243, but with rows read in boustrophedon manner, i.e., in the order in which they were created. %H A106242 Alois P. Heinz, <a href="/A106242/b106242.txt">Table of n, a(n) for n = 0..10010</a> %p A106242 T:= proc(n, k) option remember; %p A106242 local t; %p A106242 if n<1 or k<1 then 0 %p A106242 elif n=1 and k=1 then 1 %p A106242 elif n=1 and irem(k, 2)=1 or k=1 and irem(n, 2)=0 then 0 %p A106242 else t:= 1-2*irem(n+k, 2); %p A106242 T(n-t, k+t) + T(n, k-1)+T(n-1, k) %p A106242 fi %p A106242 end: %p A106242 seq (`if` (irem(d, 2)=1, %p A106242 seq (T(d-k, k), k=1..d-1), %p A106242 seq (T(n, d-n), n=1..d-1)), d=2..11); # _Alois P. Heinz_, Feb 08 2011 %t A106242 T[n_, k_] := T[n, k] = Module[{t}, Which[n<1 || k<1, 0, n == 1 && k == 1, 1, n == 1 && Mod[k, 2] == 1 || k == 1 && Mod[n, 2] == 0, 0, True, t = 1 - 2*Mod[n+k, 2]; T[n-t, k+t] + T[n, k-1] + T[n-1, k]]]; Table[If[Mod[d, 2] == 1, Table[T[d-k, k], {k, 1, d-1}], Table[T[n, d-n], {n, 1, d-1}]], {d, 2, 11}] // Flatten (* _Jean-François Alcover_, Jan 14 2014, translated from _Alois P. Heinz_'s Maple code *) %Y A106242 Right-hand diagonal is A059294. Cf. A106243. Row sums give A106327. %K A106242 nonn,tabl,easy %O A106242 0,8 %A A106242 _N. J. A. Sloane_, May 29 2005 %E A106242 More terms from _Alois P. Heinz_, Feb 08 2011