This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106255 #31 Feb 14 2022 03:54:03 %S A106255 1,1,1,1,3,1,1,3,3,1,1,3,6,3,1,1,3,6,6,3,1,1,3,6,10,6,3,1,1,3,6,10,10, %T A106255 6,3,1,1,3,6,10,15,10,6,3,1,1,3,6,10,15,15,10,6,3,1,1,3,6,10,15,21,15, %U A106255 10,6,3,1 %N A106255 Triangle composed of triangular numbers, row sums = A006918. %C A106255 Perform the operation Q * R; Q = infinite lower triangular matrix with 1, 2, 3, ... in each column (offset, fill in spaces with zeros). Q = upper right triangular matrix of the form: %C A106255 1, 1, 1, 1, ... %C A106255 0, 1, 1, 1, ... %C A106255 0, 0, 1, 1, ... %C A106255 0, 0, 0, 1, ... %C A106255 Q * R generates an array: %C A106255 1, 1, 1, 1, ... %C A106255 1, 3, 3, 3, ... %C A106255 1, 3, 6, 6, ... %C A106255 1, 3, 6, 10, ... %C A106255 ... %C A106255 ... from which we take antidiagonals forming the rows of this triangle. %H A106255 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %F A106255 From _Boris Putievskiy_, Jan 13 2013: (Start) %F A106255 T(n,k) = min(n*(n+1)/2,k*(k+1)/2), read by antidiagonals. %F A106255 a(n) = min(A002260(n)*(A002260(n)+1)/2, A004737(n)*(A004737(n)+1)/2). %F A106255 a(n) = min(i*(i+1)/2, j*(j+1)/2), where %F A106255 i = n-t*(t+1)/2, %F A106255 j = (t*t+3*t+4)/2-n, %F A106255 t = floor((-1+sqrt(8*n-7))/2). (End) %e A106255 From _Boris Putievskiy_, Jan 13 2013: (Start) %e A106255 The start of the sequence as table: %e A106255 1, 1, 1, 1, 1, 1, ... %e A106255 1, 3, 3, 3, 3, 3, ... %e A106255 1, 3, 6, 6, 6, 6, ... %e A106255 1, 3, 6, 10, 10, 10, ... %e A106255 1, 3, 6, 10, 15, 15, ... %e A106255 1, 3, 6, 10, 15, 21, ... %e A106255 1, 3, 6, 10, 15, 21, ... %e A106255 ... %e A106255 (End) %e A106255 Triangle rows or columns can be generated by following the triangle format: %e A106255 1; %e A106255 1, 1; %e A106255 1, 3, 1; %e A106255 1, 3, 3, 1; %e A106255 1, 3, 6, 3, 1; %e A106255 1, 3, 6, 6, 3, 1; %e A106255 1, 3, 6, 10, 6, 3, 1; %e A106255 1, 3, 6, 10, 10, 6, 3, 1; %e A106255 1, 3, 6, 10, 15, 10, 6, 3, 1; %e A106255 1, 3, 6, 10, 15, 15, 10, 6, 3, 1; %e A106255 1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1; %e A106255 ... %t A106255 p[x_, n_] = Sum[x^i*If[i ==Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], 2*(i + 1), -(2*((n + 1) - i))]], {i, 0, n}]/(2*(1 - x)); %t A106255 Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}]; %t A106255 Flatten[%] %Y A106255 Cf. A006918 (row sums, without the zero), A002260, A004736. %K A106255 nonn,tabl %O A106255 1,5 %A A106255 _Gary W. Adamson_, Apr 28 2005 %E A106255 Additional comments from _Roger L. Bagula_ and _Gary W. Adamson_, Apr 02 2009