This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106262 #12 Jan 11 2023 15:59:46 %S A106262 1,0,1,0,2,1,0,1,2,1,0,2,0,2,1,0,1,0,4,2,1,0,2,0,3,4,2,1,0,1,0,1,2,4, %T A106262 2,1,0,2,0,2,4,1,4,2,1,0,1,0,4,2,2,0,4,2,1,0,2,0,3,4,4,0,8,4,2,1,0,1, %U A106262 0,1,2,1,0,7,8,4,2,1,0,2,0,2,4,2,0,5,6,8,4,2,1,0,1,0,4,2,4,0,1,2,5,8,4,2,1 %N A106262 An invertible triangle of remainders of 2^n. %H A106262 G. C. Greubel, <a href="/A106262/b106262.txt">Rows n = 0..50 of the triangle, flattened</a> %F A106262 T(n, k) = 2^(n-k) mod (k+2). %F A106262 Sum_{k=0..n} T(n, k) = A106263(n) (row sums). %F A106262 Sum_{k=0..floor(n/2)} T(n-k, k) = A106264(n) (diagonal sums). %F A106262 From _G. C. Greubel_, Jan 10 2023: (Start) %F A106262 T(n, 0) = A000007(n). %F A106262 T(n, 1) = A000034(n+1). %F A106262 T(2*n, n) = A213859(n). %F A106262 T(2*n, n-1) = A015910(n+1). %F A106262 T(2*n, n+1) = A294390(n+3). %F A106262 T(2*n+1, n-1) = A112983(n+1). %F A106262 T(2*n+1, n+1) = A294389(n+3). %F A106262 T(2*n-1, n-1) = A062173(n+1). (End) %e A106262 Triangle begins: %e A106262 1; %e A106262 0, 1; %e A106262 0, 2, 1; %e A106262 0, 1, 2, 1; %e A106262 0, 2, 0, 2, 1; %e A106262 0, 1, 0, 4, 2, 1; %e A106262 0, 2, 0, 3, 4, 2, 1; %e A106262 0, 1, 0, 1, 2, 4, 2, 1; %e A106262 0, 2, 0, 2, 4, 1, 4, 2, 1; %e A106262 0, 1, 0, 4, 2, 2, 0, 4, 2, 1; %t A106262 Table[PowerMod[2, n-k, k+2], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 10 2023 *) %o A106262 (Magma) [Modexp(2, n-k, k+2): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jan 10 2023 %o A106262 (SageMath) flatten([[power_mod(2,n-k,k+2) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Jan 10 2023 %Y A106262 Cf. A106263 (row sums), A106264 (diagonal sums). %Y A106262 Cf. A000034, A015910, A062173, A112983, A213859, A294389, A294390. %K A106262 easy,nonn,tabl %O A106262 0,5 %A A106262 _Paul Barry_, Apr 28 2005