This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106284 #21 Feb 16 2025 08:32:57 %S A106284 3,5,7,11,13,17,31,37,41,53,71,79,83,107,151,157,199,229,233,239,241, %T A106284 257,263,277,281,311,317,331,337,379,389,409,431,433,463,467,521,523, %U A106284 541,547,557,563,571,577,607,631,659,677,727,769,787,809,827,839,853 %N A106284 Primes p such that the polynomial x^5-x^4-x^3-x^2-x-1 mod p has no zeros. %C A106284 This polynomial is the characteristic polynomial of the Fibonacci and Lucas 5-step sequences, A001591 and A074048. %H A106284 Robert Israel, <a href="/A106284/b106284.txt">Table of n, a(n) for n = 1..10000</a> %H A106284 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a> %p A106284 P:= x^5-x^4-x^3-x^2-x-1: %p A106284 select(p -> [msolve(P,p)] = [], [seq(ithprime(i),i=1..10000)]); # _Robert Israel_, Mar 13 2024 %t A106284 t=Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x^4-x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 200}];Prime[Flatten[Position[t, 0]]] %o A106284 (Python) %o A106284 from itertools import islice %o A106284 from sympy import Poly, nextprime %o A106284 from sympy.abc import x %o A106284 def A106284_gen(): # generator of terms %o A106284 from sympy.abc import x %o A106284 p = 2 %o A106284 while True: %o A106284 if len(Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).ground_roots())==0: %o A106284 yield p %o A106284 p = nextprime(p) %o A106284 A106284_list = list(islice(A106284_gen(),20)) # _Chai Wah Wu_, Mar 14 2024 %Y A106284 Cf. A106278 (number of distinct zeros of x^5-x^4-x^3-x^2-x-1 mod prime(n)), A106298, A106304 (period of Lucas and Fibonacci 5-step sequence mod prime(n)), A003631 (primes p such that x^2-x-1 is irreducible mod p). %K A106284 nonn %O A106284 1,1 %A A106284 _T. D. Noe_, May 02 2005 %E A106284 Name corrected by _Robert Israel_, Mar 13 2024