This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106290 #23 Feb 16 2025 08:32:57 %S A106290 1,3,4,4,2,9,2,6,7,6,2,11,2,6,8,8,2,9,3,8,8,6,4,12,3,6,10,8,3,18,2,10, %T A106290 8,6,4,11,2,6,8,12,2,18,4,8,14,9,4,16,3,9,8,8,2,12,4,12,10,6,3,22 %N A106290 Number of different orbit lengths of the 5-step recursion mod n. %C A106290 Consider the 5-step recursion x(k) = (x(k-1)+x(k-2)+x(k-3)+x(k-4)+x(k-5)) mod n. For any of the n^5 initial conditions x(1), x(2), x(3), x(4) and x(5) in Zn, the recursion has a finite period. Each of these n^5 vectors belongs to exactly one orbit. In general, there are only a few different orbit lengths for each n. For n=8, there are 6 different lengths: 1, 2, 3, 6, 12 and 24. The maximum possible length of an orbit is A106303(n), the period of the Fibonacci 5-step sequence mod n. %H A106290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>. %o A106290 (Python) %o A106290 from itertools import count,product %o A106290 def A106290(n): %o A106290 bset, tset = set(), set() %o A106290 for t in product(range(n),repeat=5): %o A106290 t2 = t %o A106290 for c in count(1): %o A106290 t2 = t2[1:] + (sum(t2)%n,) %o A106290 if t == t2: %o A106290 bset.add(c) %o A106290 tset.add(t) %o A106290 break %o A106290 if t2 in tset: %o A106290 tset.add(t) %o A106290 break %o A106290 return len(bset) # _Chai Wah Wu_, Feb 22 2022 %Y A106290 Cf. A106287 (orbits of 5-step sequences), A106309 (primes that yield a simple orbit structure in 5-step recursions). %K A106290 nonn,more %O A106290 1,2 %A A106290 _T. D. Noe_, May 02 2005