This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106309 #38 Jul 22 2025 13:10:30 %S A106309 5,7,11,13,17,31,37,41,53,79,107,199,233,239,311,331,337,389,463,523, %T A106309 541,547,557,563,577,677,769,853,937,971,1009,1021,1033,1049,1061, %U A106309 1201,1237,1291,1307,1361,1427,1453,1543,1657,1699,1723,1747,1753,1759,1787,1801,1811,1861,1877,1997,1999 %N A106309 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period. %C A106309 The first term not in A371566 is a(105) = 4259. %H A106309 Robert Israel, <a href="/A106309/b106309.txt">Table of n, a(n) for n = 1..10000</a> %H A106309 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a> %H A106309 Robert Israel, <a href="/A106309/a106309.pdf">Linear Recurrences With a Single Minimal Period</a> %e A106309 a(3) = 11 is a term because the recurrence has period 16105 for all initial conditions except (0,0,0,0,0). %p A106309 filter:= proc(p) local Q,q,F,i,z,d,k,kp,G,alpha; %p A106309 Q:= z^5 - z^4 - z^3 - z^2 - z - 1; %p A106309 if Irreduc(Q) mod p then return true fi; %p A106309 F:= (Factors(Q) mod p)[2]; %p A106309 if ormap(t -> t[2]>1, F) then return false fi; %p A106309 for i from 1 to nops(F) do %p A106309 q:= F[i][1]; %p A106309 d:= degree(q); %p A106309 if d = 1 then %p A106309 kp:= numtheory:-order(solve(q,z),p); %p A106309 else %p A106309 G:= GF(p,d, q); %p A106309 alpha:= G:-ConvertIn(z); %p A106309 kp:= G:-order(alpha); %p A106309 fi; %p A106309 if i = 1 then k:= kp %p A106309 elif kp <> k then return false %p A106309 fi; %p A106309 od; %p A106309 true %p A106309 end proc: %p A106309 select(filter, [seq(ithprime(i),i=1..1000)]); %Y A106309 Cf. A106287 (orbits of 5-step sequences). Contains A371566. %K A106309 nonn %O A106309 1,1 %A A106309 _T. D. Noe_, May 02 2005, revised May 12 2005 %E A106309 4259 found by D. S. McNeil. %E A106309 Edited by _Robert Israel_, Mar 27 2024