cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106334 Decimal expansion of the function F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).

This page as a plain text file.
%I A106334 #7 Mar 05 2013 05:12:43
%S A106334 1,9,8,7,3,6,9,7,2,1,1,8,4,6,8,4,1,4,5,2,6,9,2,8,9,7,8,3,3,4,4,4,1,2,
%T A106334 6,1,8,3,4,2,7,1,7,7,2,9,8,5,5,4,5,7,4,7,0,3,5,6,2,2,3,1,0,3,8,2,6,9,
%U A106334 5,8,9,3,8,8,6,6,2,5,5,4,7,7,6,2,0,9,7,6,2,9,9,6,3,3,6,5,7,2,7,4,6,8,1,3,5
%N A106334 Decimal expansion of the function F(x) evaluated at the constant x that satisfies: F(x) - x*F'(x) = 0, where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
%C A106334 Constant A106333 divided by this constant equals constant A106335, the radius of convergence of the g.f. of A106336.
%e A106334 F(x)=1.9873697211846841452692897833444126183427177298554574703562231
%e A106334 where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + ...
%e A106334 at x = 0.6411803884299545796456448886283011... (A106333).
%t A106334 digits = 105; x0 = x /. FindRoot[ Sum[(1 - n*(n+1)/2)*x^(n*(n+1)/2), {n, 0, digits}], {x, 1/2}, WorkingPrecision -> digits+5]; f[x_] := EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)); f[x0] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Mar 05 2013 *)
%o A106334 (PARI) A106333=solve(x=.6,.7,sum(n=0,100,(1-n*(n+1)/2)*x^(n*(n+1)/2))); A106334=sum(n=0,100, A106333^(n*(n+1)/2))
%Y A106334 Cf. A106333, A106335, A106332, A106336.
%K A106334 cons,nonn
%O A106334 1,2
%A A106334 _Paul D. Hanna_, Apr 29 2005