cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106340 Triangle T, read by rows, equal to the matrix inverse of the triangle defined by [T^-1](n,k) = (n-k)!*A008278(n+1,k+1), for n>=k>=0, where A008278 is a triangle of Stirling numbers of 2nd kind.

This page as a plain text file.
%I A106340 #12 Jun 27 2019 06:11:12
%S A106340 1,-1,1,1,-3,1,-1,9,-7,1,1,-45,55,-15,1,-1,585,-835,285,-31,1,1,
%T A106340 -21105,30835,-11025,1351,-63,1,-1,1858185,-2719675,977445,-121891,
%U A106340 6069,-127,1,1,-367958745,538607755,-193649085,24187051,-1213065,26335,-255,1,-1,157169540745,-230061795355,82717588485
%N A106340 Triangle T, read by rows, equal to the matrix inverse of the triangle defined by [T^-1](n,k) = (n-k)!*A008278(n+1,k+1), for n>=k>=0, where A008278 is a triangle of Stirling numbers of 2nd kind.
%C A106340 Row sums are {1,0,-1,2,-3,4,-5,6,...}. Column 1 is A106341.
%F A106340 T(n, k) = A106338(n, k)/k!, for n>=k>=0.
%e A106340 Triangle T begins:
%e A106340   1;
%e A106340   -1,1;
%e A106340   1,-3,1;
%e A106340   -1,9,-7,1;
%e A106340   1,-45,55,-15,1;
%e A106340   -1,585,-835,285,-31,1;
%e A106340   1,-21105,30835,-11025,1351,-63,1;
%e A106340   -1,1858185,-2719675,977445,-121891,6069,-127,1;
%e A106340   1,-367958745,538607755,-193649085,24187051,-1213065,26335,-255,1;
%e A106340   ...
%e A106340 Matrix inverse begins:
%e A106340   1;
%e A106340   1,1;
%e A106340   2,3,1;
%e A106340   6,12,7,1;
%e A106340   24,60,50,15,1;
%e A106340   120,360,390,180,31,1;
%e A106340   ...
%e A106340 where [T^-1](n,k) = (n-k)!*A008278(n+1,k+1).
%t A106340 rows = 10;
%t A106340 M = Table[If[r >= c, (r-c)! Sum[(-1)^(r-c-m+1) m^r/m!/(r-c-m+1)!, {m, 0, r-c+1}], 0], {r, rows}, {c, rows}] // Inverse;
%t A106340 T[n_, k_] := M[[n+1, k+1]];
%t A106340 Table[T[n, k], {n, 0, rows-1}, {k, 0, n}] (* _Jean-François Alcover_, Jun 27 2019, from PARI *)
%o A106340 (PARI) {T(n,k)=(matrix(n+1,n+1,r,c,if(r>=c,(r-c)!* sum(m=0,r-c+1,(-1)^(r-c+1-m)*m^r/m!/(r-c+1-m)!)))^-1)[n+1,k+1]}
%o A106340 (Sage)
%o A106340 def A106340_matrix(d):
%o A106340     def A130850(n, k):   # EulerianNumber = A173018
%o A106340         return add(EulerianNumber(n,j)*binomial(n-j,k) for j in (0..n))
%o A106340     return matrix(ZZ, d, A130850).inverse()
%o A106340 A106340_matrix(8)  # _Peter Luschny_, May 21 2013
%Y A106340 Cf. A106338, A008278, A106341.
%K A106340 sign,tabl
%O A106340 0,5
%A A106340 _Paul D. Hanna_, May 01 2005