cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106342 Matrix inverse of A008278, which is the reflected triangle of the Stirling numbers of 2nd kind.

This page as a plain text file.
%I A106342 #6 Feb 03 2025 21:35:01
%S A106342 1,-1,1,2,-3,1,-9,15,-7,1,94,-160,80,-15,1,-2220,3790,-1915,375,-31,1,
%T A106342 114456,-195461,98875,-19460,1652,-63,1,-12542341,21419587,-10836231,
%U A106342 2133635,-181559,7035,-127,1,2868686486,-4899099640,2478483560,-488022556,41534164,-1611120,29360,-255,1
%N A106342 Matrix inverse of A008278, which is the reflected triangle of the Stirling numbers of 2nd kind.
%F A106342 T(n, k) = (Stirling2(n, n-k))^[-1], where T^[-1] denotes the matrix inverse of T.
%e A106342 Triangle T begins:
%e A106342           1;
%e A106342          -1,        1;
%e A106342           2,       -3,         1;
%e A106342          -9,       15,        -7,       1;
%e A106342          94,     -160,        80,     -15,       1;
%e A106342       -2220,     3790,     -1915,     375,     -31,    1;
%e A106342      114456,  -195461,     98875,  -19460,    1652,  -63,    1;
%e A106342   -12542341, 21419587, -10836231, 2133635, -181559, 7035, -127, 1;
%o A106342 (PARI) {T(n,k)=(matrix(n+1,n+1,r,c,if(r>=c, sum(m=0,r-c+1,(-1)^(r-c+1-m)*m^r/m!/(r-c+1-m)!)))^-1)[n+1,k+1]}
%Y A106342 Row sums are A000007.
%Y A106342 Column 0 is A106343.
%Y A106342 Cf. A008278, A106340.
%K A106342 sign,tabl
%O A106342 0,4
%A A106342 _Paul D. Hanna_, May 01 2005