This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106352 #10 Apr 28 2022 20:21:56 %S A106352 1,2,7,9,15,21,28,35,46,54,66,78,91,104,121,135,153,171,190,209,232, %T A106352 252,276,300,325,350,379,405,435,465,496,527,562,594,630,666,703,740, %U A106352 781,819,861,903,946,989,1036,1080,1128,1176,1225,1274,1327,1377,1431 %N A106352 Number of compositions of n into 3 parts such that no two adjacent parts are equal. %C A106352 3*a(n) is total number of parts of multiplicity 1 in all compositions of n into 3 parts. - _Vladeta Jovovic_, Apr 27 2006 %H A106352 A. Knopfmacher and H. Prodinger, <a href="http://dx.doi.org/10.1006/eujc.1998.0216">On Carlitz compositions</a>, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589. %H A106352 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1). %F A106352 G.f. x^4*(1+4*x^2-3*x^3+4*x^4)/((1-x^6)*(1-x)^2). %t A106352 Drop[CoefficientList[Series[x^4(1+4x^2-3x^3+4x^4)/((1-x^6)(1-x)^2),{x,0,60}],x],4] (* or *) LinearRecurrence[{1,1,0,-1,-1,1},{1,2,7,9,15,21},60] (* _Harvey P. Dale_, May 13 2018 *) %Y A106352 Column 3 of A106351. Cf. A003242. %K A106352 nonn %O A106352 4,2 %A A106352 _Christian G. Bower_, Apr 29 2005