cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106354 Number of compositions of n into 5 parts such that no two adjacent parts are equal.

This page as a plain text file.
%I A106354 #21 Mar 13 2024 04:42:13
%S A106354 1,3,15,30,68,119,204,316,489,696,987,1340,1801,2348,3035,3833,4812,
%T A106354 5935,7273,8792,10576,12576,14887,17465,20401,23651,27319,31349,35861,
%U A106354 40791,46260,52212,58776,65881,73667,82068,91225,101067,111748,123185
%N A106354 Number of compositions of n into 5 parts such that no two adjacent parts are equal.
%H A106354 A. Knopfmacher and H. Prodinger, <a href="http://dx.doi.org/10.1006/eujc.1998.0216">On Carlitz compositions</a>, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
%H A106354 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1).
%F A106354 G.f.: -x^7*(16*x^8 +12*x^7 +21*x^6 +22*x^5 +23*x^4 +12*x^3 +11*x^2 +2*x +1) / ((x -1)^5*(x +1)^2*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). [_Colin Barker_, Feb 13 2013]
%t A106354 LinearRecurrence[{1,1,0,0,-1,-1,-1,1,1,1,0,0,-1,-1,1},{1,3,15,30,68,119,204,316,489,696,987,1340,1801,2348,3035},40] (* _Harvey P. Dale_, Dec 15 2013 *)
%Y A106354 Column 5 of A106351. Cf. A003242.
%K A106354 nonn,easy
%O A106354 7,2
%A A106354 _Christian G. Bower_, Apr 29 2005