cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106355 Number of compositions of n into 6 parts such that no two adjacent parts are equal.

This page as a plain text file.
%I A106355 #9 Sep 04 2015 10:42:21
%S A106355 2,10,30,76,168,320,580,968,1558,2380,3540,5078,7160,9804,13238,17510,
%T A106355 22884,29418,37462,47054,58638,72272,88454,107262,129312,154644,
%U A106355 183994,217442,255782,299114,348386,403652,466012,535550,613442,699812,796012
%N A106355 Number of compositions of n into 6 parts such that no two adjacent parts are equal.
%H A106355 Alois P. Heinz, <a href="/A106355/b106355.txt">Table of n, a(n) for n = 9..1000</a>
%H A106355 A. Knopfmacher and H. Prodinger, <a href="http://www.sciencedirect.com/science/article/pii/S0195669898902165">On Carlitz compositions</a>, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
%F A106355 G.f.: 2 *(16*x^12 +16*x^11 +31*x^10 +40*x^9 +53*x^8 +51*x^7 +51*x^6 +39*x^5 +31*x^4 +18*x^3 +9*x^2 +4*x+1) *x^9 / ((x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+1) *(x^2+x+1)^2 *(x+1)^3 *(x-1)^6). - _Alois P. Heinz_, Sep 04 2015
%Y A106355 Column 6 of A106351. Cf. A003242.
%K A106355 nonn,easy
%O A106355 9,1
%A A106355 _Christian G. Bower_, Apr 29 2005
%E A106355 Replaced broken link, _Vaclav Kotesovec_, May 01 2014