This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106356 #24 May 08 2025 04:19:58 %S A106356 1,1,1,3,0,1,4,3,0,1,7,6,2,0,1,14,7,8,2,0,1,23,20,10,8,2,0,1,39,42,22, %T A106356 13,9,2,0,1,71,72,58,28,14,10,2,0,1,124,141,112,72,33,16,11,2,0,1,214, %U A106356 280,219,150,92,36,18,12,2,0,1,378,516,466,311,189,112,40,20,13,2,0,1 %N A106356 Triangle T(n,k) 0<=k<n : Number of compositions of n with k adjacent equal parts. %C A106356 For n > 0, also the number of compositions of n with k + 1 maximal anti-runs (sequences without adjacent equal terms). - _Gus Wiseman_, Mar 23 2020 %H A106356 Alois P. Heinz, <a href="/A106356/b106356.txt">Rows n = 1..141, flattened</a> %H A106356 A. Knopfmacher and H. Prodinger, <a href="http://dx.doi.org/10.1006/eujc.1998.0216">On Carlitz compositions</a>, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589. %e A106356 T(4,1) = 3 because the compositions of 4 with 1 adjacent equal part are 1+1+2, 2+1+1, 2+2. %e A106356 Triangle begins: %e A106356 1; %e A106356 1, 1; %e A106356 3, 0, 1; %e A106356 4, 3, 0, 1; %e A106356 7, 6, 2, 0, 1; %e A106356 14, 7, 8, 2, 0, 1; %e A106356 23, 20, 10, 8, 2, 0, 1; %e A106356 ... %e A106356 From _Gus Wiseman_, Mar 23 2020 (Start) %e A106356 Row n = 6 counts the following compositions (empty column shown by dot): %e A106356 (6) (33) (222) (11112) . (111111) %e A106356 (15) (114) (1113) (21111) %e A106356 (24) (411) (1122) %e A106356 (42) (1131) (2211) %e A106356 (51) (1221) (3111) %e A106356 (123) (1311) (11121) %e A106356 (132) (2112) (11211) %e A106356 (141) (12111) %e A106356 (213) %e A106356 (231) %e A106356 (312) %e A106356 (321) %e A106356 (1212) %e A106356 (2121) %e A106356 (End) %p A106356 b:= proc(n, h, t) option remember; %p A106356 if n=0 then `if`(t=0, 1, 0) %p A106356 elif t<0 then 0 %p A106356 else add(b(n-j, j, `if`(j=h, t-1, t)), j=1..n) %p A106356 fi %p A106356 end: %p A106356 T:= (n, k)-> b(n, -1, k): %p A106356 seq(seq(T(n, k), k=0..n-1), n=1..15); # _Alois P. Heinz_, Oct 23 2011 %t A106356 b[n_, h_, t_] := b[n, h, t] = If[n == 0, If[t == 0, 1, 0], If[t<0, 0, Sum[b[n-j, j, If [j == h, t-1, t]], {j, 1, n}]]]; T[n_, k_] := b[n, -1, k]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* _Jean-François Alcover_, Feb 20 2015, after _Alois P. Heinz_ *) %t A106356 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],n==0||Length[Split[#,#1!=#2&]]==k+1&]],{n,0,12},{k,0,n}] (* _Gus Wiseman_, Mar 23 2020 *) %Y A106356 Row sums: 2^(n-1)=A000079(n-1). Columns 0-4: A003242, A106357-A106360. %Y A106356 The version counting adjacent unequal parts is A238279. %Y A106356 The k-th composition in standard-order has A124762(k) adjacent equal parts and A333382(k) adjacent unequal parts. %Y A106356 The k-th composition in standard-order has A124767(k) maximal runs and A333381(k) maximal anti-runs. %Y A106356 The version for ascents/descents is A238343. %Y A106356 The version for weak ascents/descents is A333213. %Y A106356 Cf. A064113, A066099, A233564, A333214, A333216. %K A106356 nonn,tabl %O A106356 1,4 %A A106356 _Christian G. Bower_, Apr 29 2005