This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106357 #21 May 17 2024 05:23:47 %S A106357 1,0,3,6,7,20,42,72,141,280,516,976,1853,3420,6361,11844,21819,40192, %T A106357 73942,135452,247828,452776,825252,1501998,2730159,4954890,8981360, %U A106357 16261568,29408708,53130154,95894384,172917788,311538169,560831286 %N A106357 Number of compositions of n with exactly 1 adjacent equal pair of parts. %H A106357 Alois P. Heinz, <a href="/A106357/b106357.txt">Table of n, a(n) for n = 2..1000</a> %H A106357 A. Knopfmacher and H. Prodinger, <a href="https://doi.org/10.1006/eujc.1998.0216">On Carlitz compositions</a>, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589. %F A106357 a(n) ~ c * d^n * n, where d = A241902 = 1.750241291718309031249738624639..., c = 0.04826600476992825168367... . - _Vaclav Kotesovec_, Sep 05 2014 %F A106357 G.f.: (Sum_{i>0} C(x)*x^(2*i)/(1+x^i)^2)/(1 - Sum_{i>0} x^i/(1+x^i)) where C(x) is the g.f. for A003242. - _John Tyler Rascoe_, May 16 2024 %p A106357 b:= proc(n, v) option remember; `if`(n=0, [1, 0], %p A106357 add((p-> `if`(i=v, [0, p[1]], p))(b(n-i, i)), i=1..n)) %p A106357 end: %p A106357 a:= n-> b(n, 0)[2]: %p A106357 seq(a(n), n=2..45); # _Alois P. Heinz_, May 09 2014 %t A106357 b[n_, v_] := b[n, v] = If[n == 0, {1, 0}, Sum[Function[p, If[i == v, {0, p[[1]]}, p]][b[n - i, i]], {i, 1, n}]]; %t A106357 a[n_] := b[n, 0][[2]]; %t A106357 a /@ Range[2, 45] (* _Jean-François Alcover_, Nov 02 2020, after _Alois P. Heinz_ *) %o A106357 (PARI) %o A106357 C_x(N)={my(g=1/(1 - sum(k=1, N, x^k/(1+x^k))));g} %o A106357 A_x(N)={my(x='x+O('x^N), h=sum(i=1,N,(C_x(N)*x^(2*i))/(1+x^i)^2 )/(1-sum(i=1,N,(x^i)/(1+x^i)))); Vec(h)} %o A106357 A_x(40) \\ _John Tyler Rascoe_, May 16 2024 %Y A106357 Column 1 of A106356. Cf. A003242. %Y A106357 Cf. A241902. %K A106357 nonn %O A106357 2,3 %A A106357 _Christian G. Bower_, Apr 29 2005 %E A106357 Replaced broken link, _Vaclav Kotesovec_, May 01 2014