This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106370 #14 Jul 30 2025 09:46:26 %S A106370 2,3,2,3,3,4,2,3,4,4,4,5,3,3,2,3,3,5,5,6,4,3,3,5,3,3,4,6,4,4,2,5,5,5, %T A106370 6,5,4,4,4,3,3,4,3,3,4,4,4,5,3,3,6,3,3,4,4,5,4,4,4,7,4,4,2,5,6,5,3,3, %U A106370 5,3,3,5,5,5,7,3,3,7,3,3,5,5,5,5,4,4,4,5,4,4,4,5,4,4,4,5,5,5,5,6,4,4,4,6,4 %N A106370 Smallest b > 1 such that n contains no zeros in its base b representation. %H A106370 Reinhard Zumkeller, <a href="/A106370/b106370.txt">Table of n, a(n) for n = 1..10000</a> %F A106370 a(n*a(n)+k) <= a(n) for 1 <= k < a(n). %F A106370 a(A106372(n)) = n and a(m) <> n for m < A106372(n). %F A106370 a(A000225(n)) = 2; a(A032924(n)) = 3 for n <> 5. %e A106370 n = 20: 20[binary] = '101001', 20[ternary] = '202', 20[base-4] = '110', 20[base-5] = '40', all containing at least one zero, but: 20[base-6] = '32', containing no zero therefore a(20) = 6. %t A106370 a[n_] := Module[{b = 2}, While[MemberQ[IntegerDigits[n, b], 0], b++]; b]; Array[a, 100] (* _Amiram Eldar_, Jul 29 2025 *) %o A106370 (Haskell) %o A106370 a106370 n = f 2 n where %o A106370 f b x = g x where %o A106370 g 0 = b %o A106370 g z = if r == 0 then f (b + 1) n else g z' %o A106370 where (z', r) = divMod z b %o A106370 -- _Reinhard Zumkeller_, Apr 12 2015 %Y A106370 Cf. A106371. %Y A106370 Cf. A000225, A032924, A106372, A119352. %K A106370 nonn,base %O A106370 1,1 %A A106370 _Reinhard Zumkeller_, May 01 2005 %E A106370 Typo in comment fixed by _Reinhard Zumkeller_, Aug 06 2010