This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106387 #33 Jan 20 2018 01:26:37 %S A106387 4,6,15,17,26,28,37,39,48,50,59,61,70,72,81,83,92,94,103,105,114,116, %T A106387 125,127,136,138,147,149,158,160,169,171,180,182,191,193,202,204,213, %U A106387 215,224,226,235,237,246,248,257,259,268,270,279,281,290,292,301,303 %N A106387 Numbers j such that 6j^2 + 6j + 1 = 11k. %C A106387 k sequence = A106388. %H A106387 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A106387 j(1)=4, j(2)=6 then j(n)=j(n-2)+11. %F A106387 a(n) = 11*n - a(n-1) - 12 (with a(1)=4). - _Vincenzo Librandi_, Nov 13 2010 %F A106387 a(2k-1) = 11k - 7, a(2k) = 11k - 5. - _Ralf Stephan_, Nov 15 2010 %F A106387 From _Bruno Berselli_, Nov 16 2010: (Start) %F A106387 a(n) = (22*n - 7*(-1)^n - 13)/4. %F A106387 G.f.: x*(4+2*x+5*x^2)/((1+x)*(1-x)^2). %F A106387 a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3. %F A106387 a(n) - a(n-2) = 11 for n > 2. %F A106387 a(n) - 2*a(n-1) + a(n-2) = -7*(-1)^n for n > 2. (End) %t A106387 Select[Range[320],Divisible[6#^2+6#+1,11]&] (* _Harvey P. Dale_, Sep 10 2011 *) %o A106387 (PARI) Vec((4+2*x+5*x^2)/(1+x)/(1-x)^2+O(x^99)) \\ _Charles R Greathouse IV_, Dec 28 2011 %Y A106387 Cf. A106388, A106389, A106390. %K A106387 nonn,easy %O A106387 1,1 %A A106387 _Pierre CAMI_, May 01 2005