This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106407 #25 Aug 26 2018 04:46:47 %S A106407 1,-2,-1,4,-3,2,3,-8,1,6,-1,-4,5,-6,-5,16,-7,-2,7,-12,5,2,-5,8,1,-10, %T A106407 -1,12,-11,10,11,-32,9,14,-9,4,5,-14,-5,24,-7,-10,7,-4,-3,10,3,-16,9, %U A106407 -2,-9,20,-11,2,11,-24,1,22,-1,-20,21,-22,-21,64,-23,-18,23,-28,5,18,-5,-8,9,-10,-9,28,-19,10,19,-48,17,14,-17,20 %N A106407 Expansion of x((1-x)(1-x^2)(1-x^4)(1-x^8)...)^2. %C A106407 The Stern polynomial B(n,x) evaluated at x=-2. See A125184. - _T. D. Noe_, Feb 28 2011 %C A106407 Self-convolution of the signed Thue-Morse sequence A106400. - _Vladimir Reshetnikov_, Apr 13 2018 %H A106407 Alois P. Heinz, <a href="/A106407/b106407.txt">Table of n, a(n) for n = 1..10000</a> %H A106407 Maciej Gawron, Piotr Miska, Maciej Ulas, <a href="https://arxiv.org/abs/1703.01955">Arithmetic properties of coefficients of power series expansion of Prod_{n>=0} (1-x^(2^n))^t</a>, arXiv:1703.01955 [math.NT], 2017. %H A106407 Eric Rowland, <a href="https://arxiv.org/abs/1704.05872">A matrix generalization of a theorem of Fine</a>, arXiv:1704.05872 [math.NT], 2017. %H A106407 Eric Rowland, <a href="http://math.colgate.edu/~integers/sjs18/sjs18.Abstract.html">A matrix generalization of a theorem of Fine</a>, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A18. %F A106407 Euler transform of sequence b(n) where b(2^k)=-2 and zero otherwise. %F A106407 G.f.: A(x) satisfies 0=f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6)=u1^3*u6 + 6*u1^2*u2*u6 + 9*u1*u2^2*u6 - u3*u2^3. %F A106407 G.f.: x(Product_{k>=0} (1-x^(2^k)))^2. %F A106407 G.f.: A(x) satisfies 0=f(A(x), A(x^2), A(x^4)) where f(u, v, w)=-v^3+4uvw+u^2w. %t A106407 Table[Sum[(-1)^(DigitCount[k, 2, 1] + DigitCount[n-k-1, 2, 1]), {k, 0, n-1}], {n, 1, 80}] (* _Vladimir Reshetnikov_, Apr 13 2018 *) %o A106407 (PARI) {a(n)=local(A,m); if(n<1,0,n--; A=1+x*O(x^n); m=1; while(m<=n, A*=(1-x^m); m*=2;); polcoeff(A^2,n))} %K A106407 sign,look %O A106407 1,2 %A A106407 _Michael Somos_, May 02 2005