This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106411 #8 Sep 12 2024 19:23:43 %S A106411 1,11,10,102,1110,10010,101010,1009470,11741730,1001110110, %T A106411 10407767370,1000287585570,10293281928930,1001230315195110, %U A106411 13082761331670030,1004819888620217670,100015003602410826930,1922760350154212639070 %N A106411 Smallest number beginning with 1 that is the product of exactly n distinct primes. %H A106411 Chai Wah Wu, <a href="/A106411/b106411.txt">Table of n, a(n) for n = 0..45</a> %e A106411 a(0) = 1, a(5) = 10010 = 2*5*7*11*13. %o A106411 (Python) %o A106411 from itertools import count %o A106411 from math import prod, isqrt %o A106411 from sympy import primerange, integer_nthroot, primepi, primorial %o A106411 def A106411(n): %o A106411 if n <= 1: return 1+10*n %o A106411 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A106411 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106411 for l in count(len(str(primorial(n)))-1): %o A106411 kmin, kmax = 10**l-1, 2*10**l-1 %o A106411 mmin, mmax = f(kmin), f(kmax) %o A106411 if mmax>mmin: %o A106411 while kmax-kmin > 1: %o A106411 kmid = kmax+kmin>>1 %o A106411 mmid = f(kmid) %o A106411 if mmid > mmin: %o A106411 kmax, mmax = kmid, mmid %o A106411 else: %o A106411 kmin, mmin = kmid, mmid %o A106411 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106411 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106411 base,nonn %O A106411 0,2 %A A106411 _Ray Chandler_, May 02 2005