This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106412 #8 Sep 12 2024 19:22:57 %S A106412 2,21,222,210,2310,201630,2012010,20030010,223092870,20090100030, %T A106412 200560490130,20055767721990,2000029432190790,20384767656323070, %U A106412 2000848249650860610,200001648981983238390,2183473617971732996910 %N A106412 Smallest number beginning with 2 that is the product of exactly n distinct primes. %H A106412 Chai Wah Wu, <a href="/A106412/b106412.txt">Table of n, a(n) for n = 1..45</a> %e A106412 a(1) = 2, a(5) = 2310 = 2*3*5*7*11. %o A106412 (Python) %o A106412 from itertools import count %o A106412 from math import prod, isqrt %o A106412 from sympy import primerange, integer_nthroot, primepi, primorial %o A106412 def A106412(n): %o A106412 if n == 1: return 2 %o A106412 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A106412 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106412 for l in count(len(str(primorial(n)))-1): %o A106412 kmin, kmax = 2*10**l-1, 3*10**l-1 %o A106412 mmin, mmax = f(kmin), f(kmax) %o A106412 if mmax>mmin: %o A106412 while kmax-kmin > 1: %o A106412 kmid = kmax+kmin>>1 %o A106412 mmid = f(kmid) %o A106412 if mmid > mmin: %o A106412 kmax, mmax = kmid, mmid %o A106412 else: %o A106412 kmin, mmin = kmid, mmid %o A106412 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106412 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106412 base,nonn %O A106412 1,1 %A A106412 _Ray Chandler_, May 02 2005