This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106414 #8 Sep 12 2024 19:24:09 %S A106414 41,46,42,462,4290,43890,4001970,40029990,406816410,40026056070, %T A106414 408036859230,40013061952710,405332750552730,40111962162442170, %U A106414 4000228915204892370,40909794684132183810,4000669166940700163910 %N A106414 Smallest number beginning with 4 that is the product of exactly n distinct primes. %H A106414 Chai Wah Wu, <a href="/A106414/b106414.txt">Table of n, a(n) for n = 1..44</a> %e A106414 a(1) = 41, a(3) = 42 = 2*3*7.. %o A106414 (Python) %o A106414 from itertools import count %o A106414 from math import prod, isqrt %o A106414 from sympy import primerange, integer_nthroot, primepi, primorial %o A106414 def A106414(n): %o A106414 if n == 1: return 41 %o A106414 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A106414 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106414 for l in count(len(str(primorial(n)))-1): %o A106414 kmin, kmax = 4*10**l-1, 5*10**l-1 %o A106414 mmin, mmax = f(kmin), f(kmax) %o A106414 if mmax>mmin: %o A106414 while kmax-kmin > 1: %o A106414 kmid = kmax+kmin>>1 %o A106414 mmid = f(kmid) %o A106414 if mmid > mmin: %o A106414 kmax, mmax = kmid, mmid %o A106414 else: %o A106414 kmin, mmin = kmid, mmid %o A106414 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106414 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106414 base,nonn %O A106414 1,1 %A A106414 _Ray Chandler_, May 02 2005