This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106415 #8 Sep 12 2024 18:50:45 %S A106415 5,51,506,510,5610,51870,510510,50169210,504894390,50012172210, %T A106415 503520607590,50001975553530,501601785815130,50073188107872930, %U A106415 5000089945706645790,50617203592231346070,5000858931483646541310 %N A106415 Smallest number beginning with 5 that is the product of exactly n distinct primes. %H A106415 Chai Wah Wu, <a href="/A106415/b106415.txt">Table of n, a(n) for n = 1..45</a> %e A106415 a(4) = 510 = 2*3*5*17. %o A106415 (Python) %o A106415 from itertools import count %o A106415 from math import prod, isqrt %o A106415 from sympy import primerange, integer_nthroot, primepi, primorial %o A106415 def A106415(n): %o A106415 if n == 1: return 5 %o A106415 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A106415 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106415 for l in count(len(str(primorial(n)))-1): %o A106415 kmin, kmax = 5*10**l-1, 6*10**l-1 %o A106415 mmin, mmax = f(kmin), f(kmax) %o A106415 if mmax>mmin: %o A106415 while kmax-kmin > 1: %o A106415 kmid = kmax+kmin>>1 %o A106415 mmid = f(kmid) %o A106415 if mmid > mmin: %o A106415 kmax, mmax = kmid, mmid %o A106415 else: %o A106415 kmin, mmin = kmid, mmid %o A106415 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106415 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106415 base,nonn %O A106415 1,1 %A A106415 _Ray Chandler_, May 02 2005