This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106417 #8 Sep 12 2024 19:14:46 %S A106417 7,74,70,714,7410,71610,746130,70387590,703600590,70015935990, %T A106417 700288518930,7420738134810,701098433345310,70016268785853390, %U A106417 757887406446280110,70025936403159126390,7001749954335151685670 %N A106417 Smallest number beginning with 7 that is the product of exactly n distinct primes. %H A106417 Chai Wah Wu, <a href="/A106417/b106417.txt">Table of n, a(n) for n = 1..45</a> %e A106417 a(3) = 70 = 2*5*7. %o A106417 (Python) %o A106417 from itertools import count %o A106417 from math import prod, isqrt %o A106417 from sympy import primerange, integer_nthroot, primepi, primorial %o A106417 def A106417(n): %o A106417 if n == 1: return 7 %o A106417 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A106417 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106417 for l in count(len(str(primorial(n)))-1): %o A106417 kmin, kmax = 7*10**l-1, 8*10**l-1 %o A106417 mmin, mmax = f(kmin), f(kmax) %o A106417 if mmax>mmin: %o A106417 while kmax-kmin > 1: %o A106417 kmid = kmax+kmin>>1 %o A106417 mmid = f(kmid) %o A106417 if mmid > mmin: %o A106417 kmax, mmax = kmid, mmid %o A106417 else: %o A106417 kmin, mmin = kmid, mmid %o A106417 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106417 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106417 base,nonn %O A106417 1,1 %A A106417 _Ray Chandler_, May 02 2005