This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106421 #11 Sep 12 2024 19:57:34 %S A106421 1,11,10,12,16,108,144,128,1296,1152,1024,10368,10240,12288,16384, %T A106421 110592,147456,131072,1327104,1179648,1048576,10616832,10485760, %U A106421 12582912,16777216,113246208,100663296,134217728,1006632960,1207959552 %N A106421 Smallest number beginning with 1 and having exactly n prime divisors counted with multiplicity. %H A106421 Robert Israel, <a href="/A106421/b106421.txt">Table of n, a(n) for n = 0..3302</a> %e A106421 a(0) = 1, a(5) = 108 = 2^2*3^3. %p A106421 f:= proc(n) uses priqueue; local pq, t,p,x,i; %p A106421 initialize(pq); %p A106421 insert([-2^n,2$n],pq); %p A106421 do %p A106421 t:= extract(pq); %p A106421 x:= -t[1]; %p A106421 if floor(x/10^ilog10(x)) = 1 then return x fi; %p A106421 p:= nextprime(t[-1]); %p A106421 for i from n+1 to 2 by -1 while t[i] = t[-1] do %p A106421 insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]),p$(n+2-i)],pq) %p A106421 od; %p A106421 od %p A106421 end proc: %p A106421 f(0):= 1: %p A106421 map(f, [$0..50]); # _Robert Israel_, Sep 06 2024 %o A106421 (Python) %o A106421 from itertools import count %o A106421 from math import isqrt, prod %o A106421 from sympy import primerange, integer_nthroot, primepi %o A106421 def A106421(n): %o A106421 if n <= 1: return 1+10*n %o A106421 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106421 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106421 for l in count(len(str(1<<n))-1): %o A106421 kmin, kmax = 10**l-1, 2*10**l-1 %o A106421 mmin, mmax = f(kmin), f(kmax) %o A106421 if mmax>mmin: %o A106421 while kmax-kmin > 1: %o A106421 kmid = kmax+kmin>>1 %o A106421 mmid = f(kmid) %o A106421 if mmid > mmin: %o A106421 kmax, mmax = kmid, mmid %o A106421 else: %o A106421 kmin, mmin = kmid, mmid %o A106421 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106421 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106421 base,nonn %O A106421 0,2 %A A106421 _Ray Chandler_, May 02 2005