This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106422 #11 Apr 17 2025 09:50:44 %S A106422 2,21,20,24,200,216,288,256,2592,2304,2048,20736,20480,24576,204800, %T A106422 221184,294912,262144,2654208,2359296,2097152,21233664,20971520, %U A106422 25165824,209715200,226492416,201326592,268435456,2013265920,2415919104 %N A106422 Smallest number beginning with 2 and having exactly n prime divisors counted with multiplicity. %H A106422 Robert Israel, <a href="/A106422/b106422.txt">Table of n, a(n) for n = 1..3303</a> %e A106422 a(1) = 2, a(5) = 200 = 2^3*5^2. %p A106422 f:= proc(n) uses priqueue; local pq, t, p, x, i; %p A106422 initialize(pq); %p A106422 insert([-2^n, 2$n], pq); %p A106422 do %p A106422 t:= extract(pq); %p A106422 x:= -t[1]; %p A106422 if floor(x/10^ilog10(x)) = 2 then return x fi; %p A106422 p:= nextprime(t[-1]); %p A106422 for i from n+1 to 2 by -1 while t[i] = t[-1] do %p A106422 insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq) %p A106422 od; %p A106422 od %p A106422 end proc: %p A106422 map(f, [$1..40]); # _Robert Israel_, Apr 15 2025 %o A106422 (Python) %o A106422 from itertools import count %o A106422 from math import isqrt, prod %o A106422 from sympy import primerange, integer_nthroot, primepi %o A106422 def A106422(n): %o A106422 if n == 1: return 2 %o A106422 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106422 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106422 for l in count(len(str(1<<n))-1): %o A106422 kmin, kmax = 2*10**l-1, 3*10**l-1 %o A106422 mmin, mmax = f(kmin), f(kmax) %o A106422 if mmax>mmin: %o A106422 while kmax-kmin > 1: %o A106422 kmid = kmax+kmin>>1 %o A106422 mmid = f(kmid) %o A106422 if mmid > mmin: %o A106422 kmax, mmax = kmid, mmid %o A106422 else: %o A106422 kmin, mmin = kmid, mmid %o A106422 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106422 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106422 base,nonn %O A106422 1,1 %A A106422 _Ray Chandler_, May 02 2005