This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106426 #7 Sep 12 2024 19:13:22 %S A106426 61,6,63,60,612,64,648,640,6048,6400,6912,6144,62208,61440,602112, %T A106426 65536,663552,655360,6029312,6553600,60162048,6291456,63700992, %U A106426 62914560,616562688,67108864,679477248,603979776,6115295232,6039797760 %N A106426 Smallest number beginning with 6 and having exactly n prime divisors counted with multiplicity. %e A106426 a(4) = 60 = 2^2*3*5. %o A106426 (Python) %o A106426 from itertools import count %o A106426 from math import isqrt, prod %o A106426 from sympy import primerange, integer_nthroot, primepi %o A106426 def A106426(n): %o A106426 if n == 1: return 61 %o A106426 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106426 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106426 for l in count(len(str(1<<n))-1): %o A106426 kmin, kmax = 6*10**l-1, 7*10**l-1 %o A106426 mmin, mmax = f(kmin), f(kmax) %o A106426 if mmax>mmin: %o A106426 while kmax-kmin > 1: %o A106426 kmid = kmax+kmin>>1 %o A106426 mmid = f(kmid) %o A106426 if mmid > mmin: %o A106426 kmax, mmax = kmid, mmid %o A106426 else: %o A106426 kmin, mmin = kmid, mmid %o A106426 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106426 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106426 base,nonn %O A106426 1,1 %A A106426 _Ray Chandler_, May 02 2005