This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106427 #7 Sep 12 2024 19:22:49 %S A106427 7,74,70,708,72,729,704,7056,768,7776,7168,70656,71680,702464,73728, %T A106427 746496,720896,7225344,786432,7962624,7077888,71663616,70778880, %U A106427 700710912,75497472,764411904,704643072,7113539584,7046430720 %N A106427 Smallest number beginning with 7 and having exactly n prime divisors counted with multiplicity. %e A106427 a(3) = 70 = 2*5*7. %o A106427 (Python) %o A106427 from itertools import count %o A106427 from math import isqrt, prod %o A106427 from sympy import primerange, integer_nthroot, primepi %o A106427 def A106427(n): %o A106427 if n == 1: return 7 %o A106427 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106427 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106427 for l in count(len(str(1<<n))-1): %o A106427 kmin, kmax = 7*10**l-1, 8*10**l-1 %o A106427 mmin, mmax = f(kmin), f(kmax) %o A106427 if mmax>mmin: %o A106427 while kmax-kmin > 1: %o A106427 kmid = kmax+kmin>>1 %o A106427 mmid = f(kmid) %o A106427 if mmid > mmin: %o A106427 kmax, mmax = kmid, mmid %o A106427 else: %o A106427 kmin, mmin = kmid, mmid %o A106427 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106427 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106427 base,nonn %O A106427 1,1 %A A106427 _Ray Chandler_, May 02 2005