This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106428 #7 Sep 12 2024 19:22:21 %S A106428 83,82,8,81,80,810,800,864,8000,8064,80000,80640,8192,82944,81920, %T A106428 802816,819200,884736,8126464,8257536,80621568,80216064,8388608, %U A106428 84934656,83886080,822083584,838860800,8120172544,805306368,8153726976 %N A106428 Smallest number beginning with 8 and having exactly n prime divisors counted with multiplicity. %e A106428 a(3) = 8 = 2^3. %o A106428 (Python) %o A106428 from itertools import count %o A106428 from math import isqrt, prod %o A106428 from sympy import primerange, integer_nthroot, primepi %o A106428 def A106428(n): %o A106428 if n == 1: return 83 %o A106428 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106428 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106428 for l in count(len(str(1<<n))-1): %o A106428 kmin, kmax = 8*10**l-1, 9*10**l-1 %o A106428 mmin, mmax = f(kmin), f(kmax) %o A106428 if mmax>mmin: %o A106428 while kmax-kmin > 1: %o A106428 kmid = kmax+kmin>>1 %o A106428 mmid = f(kmid) %o A106428 if mmid > mmin: %o A106428 kmax, mmax = kmid, mmid %o A106428 else: %o A106428 kmin, mmin = kmid, mmid %o A106428 return kmax # _Chai Wah Wu_, Sep 12 2024 %Y A106428 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106428 base,nonn %O A106428 1,1 %A A106428 _Ray Chandler_, May 02 2005