This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106429 #11 Aug 30 2024 02:54:45 %S A106429 97,9,92,90,918,96,972,960,9072,9600,90624,9216,93312,90112,903168, %T A106429 98304,995328,917504,9043968,9175040,90243072,9437184,95551488, %U A106429 92274688,924844032,922746880,9042919424,905969664,9172942848,9059696640 %N A106429 Smallest number beginning with 9 and having exactly n prime divisors counted with multiplicity. %e A106429 a(2) = 9 = 3^2. %o A106429 (PARI) a(n) = {i = 2^n; while ((digits(i)[1] != 9) || (bigomega(i)!=n), i++); i;} \\ _Michel Marcus_, Sep 14 2013 %o A106429 (Python) %o A106429 from itertools import count %o A106429 from math import isqrt, prod %o A106429 from sympy import primerange, integer_nthroot, primepi %o A106429 def A106429(n): %o A106429 if n == 1: return 97 %o A106429 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A106429 def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) %o A106429 for l in count(len(str(1<<n))-1): %o A106429 kmin, kmax = 9*10**l-1, 10**(l+1)-1 %o A106429 mmin, mmax = f(kmin), f(kmax) %o A106429 if mmax>mmin: %o A106429 while kmax-kmin > 1: %o A106429 kmid = kmax+kmin>>1 %o A106429 mmid = f(kmid) %o A106429 if mmid > mmin: %o A106429 kmax, mmax = kmid, mmid %o A106429 else: %o A106429 kmin, mmin = kmid, mmid %o A106429 return kmax # _Chai Wah Wu_, Aug 29 2024 %Y A106429 Cf. A077326-A077334, A106411-A106419, A106421-A106429. %K A106429 base,nonn %O A106429 1,1 %A A106429 _Ray Chandler_, May 02 2005