A106478 Inverse of sequence array for Euler phi function.
1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 3, -1, 1, -1, -1, 1, -3, 3, -1, 1, -1, -1, 1, -1, -3, 3, -1, 1, -1, -1, 1, 7, -1, -3, 3, -1, 1, -1, -1, 1, -9, 7, -1, -3, 3, -1, 1, -1, -1, 1, 5, -9, 7, -1, -3, 3, -1, 1, -1, -1, 1, -1, 5, -9, 7, -1, -3, 3, -1, 1, -1, -1, 1, -7, -1, 5, -9, 7, -1, -3, 3, -1, 1, -1, -1, 1, 25, -7, -1, 5, -9, 7, -1, -3, 3, -1, 1, -1, -1, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; 1, -1, -1, 1; -1, 1, -1, -1, 1; 3, -1, 1, -1, -1, 1; -3, 3, -1, 1, -1, -1, 1; -1, -3, 3, -1, 1, -1, -1, 1; ...
Programs
-
Mathematica
T[n_, k_] := If[k <= n, EulerPhi[n - k + 1], 0]; With[{max = 14}, Tinv = Inverse[Table[T[n, k], {n, 0, max - 1}, {k, 0, max - 1}]]; Table[Tinv[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten] (* Amiram Eldar, Nov 16 2024 *)
Formula
Riordan array (1/Sum_{j>=0}, phi(j+1) x^j, x).
Comments