cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106490 Total number of bases and exponents in Quetian Superfactorization of n, excluding the unity-exponents at the tips of branches.

This page as a plain text file.
%I A106490 #46 Jul 09 2025 04:24:58
%S A106490 0,1,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,3,1,3,2,2,1,3,2,2,2,3,1,3,1,2,2,2,
%T A106490 2,4,1,2,2,3,1,3,1,3,3,2,1,4,2,3,2,3,1,3,2,3,2,2,1,4,1,2,3,3,2,3,1,3,
%U A106490 2,3,1,4,1,2,3,3,2,3,1,4,3,2,1,4,2,2,2,3,1,4,2,3,2,2,2,3,1,3,3,4,1,3
%N A106490 Total number of bases and exponents in Quetian Superfactorization of n, excluding the unity-exponents at the tips of branches.
%C A106490 Quetian Superfactorization proceeds by factoring a natural number to its unique prime-exponent factorization (p1^e1 * p2^e2 * ... pj^ej) and then factoring recursively each of the (nonzero) exponents in similar manner, until unity-exponents are finally encountered.
%H A106490 Alois P. Heinz, <a href="/A106490/b106490.txt">Table of n, a(n) for n = 1..10000</a>
%H A106490 A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H A106490 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A106490 Additive with a(p^e) = 1 + a(e).
%F A106490 a(1) = 0; for n > 1, a(n) = 1 + a(A067029(n)) + a(A028234(n)). - _Antti Karttunen_, Mar 23 2017
%F A106490 Other identities. For all n >= 1:
%F A106490 a(A276230(n)) = n.
%F A106490 a(n) = A106493(A106444(n)).
%F A106490 a(n) = A106491(n) - A064372(n).
%e A106490 a(64) = 3, as 64 = 2^6 = 2^(2^1*3^1) and there are three non-1 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 5. a(65536) = a(2^(2^(2^(2^1)))) = 4.
%p A106490 a:= proc(n) option remember; `if`(n=1, 0,
%p A106490       add(1+a(i[2]), i=ifactors(n)[2]))
%p A106490     end:
%p A106490 seq(a(n), n=1..100);  # _Alois P. Heinz_, Nov 07 2014
%t A106490 a[n_] := a[n] = If[n == 1, 0, Sum[1 + a[i[[2]]], {i,FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *)
%o A106490 (Scheme, with memoization-macro definec)
%o A106490 (definec (A106490 n) (if (= 1 n) 0 (+ 1 (A106490 (A067029 n)) (A106490 (A028234 n))))) ;; _Antti Karttunen_, Mar 23 2017
%o A106490 (PARI)
%o A106490 A067029(n) = if(n<2, 0, factor(n)[1,2]);
%o A106490 A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after _Michel Marcus_ */
%o A106490 a(n) = if(n<2, 0, 1 + a(A067029(n)) + a(A028234(n)));
%o A106490 for(n=1, 150, print1(a(n),", ")) \\ _Indranil Ghosh_, Mar 23 2017, after formula by _Antti Karttunen_
%Y A106490 Cf. A028234, A064372, A067029, A106444, A106491, A106492, A106493.
%Y A106490 Cf. A276230 (gives first k such that a(k) = n, i.e., this sequence is a left inverse of A276230).
%Y A106490 After n=1 differs from A038548 for the first time at n=24, where A038548(24)=4, while a(24)=3.
%K A106490 nonn
%O A106490 1,4
%A A106490 _Antti Karttunen_, May 09 2005 based on _Leroy Quet_'s message ('Super-Factoring' An Integer) posted to SeqFan-mailing list on Dec 06 2003